

X4, X5, X6 - Application PHASE Controller

Operating Manual

Please note

Any information in this document is subject to change without notice and does not represent a commitment on the part of Sartorius. This product should be operated only by trained and qualified personnel. In correspondence concerning this product the type, name and release number as well as all license numbers in relation to the product have to be quoted.

Important

This product is partly copyrighted. It may not be modified or copied and may not be used without purchasing or written authority from the copyright owner (Sartorius). By using this product, you agree to be bound by the terms stated herein.

Bitte beachten

Alle Angaben in diesem Dokument sind unverbindlich für Sartorius und stehen unter Änderungsvorbehalt. Die Bedienung des Produktes darf nur von geschultem, fach- und sachkundigem Personal durchgeführt werden. Bei Schriftwechsel über dieses Produkt bitte Typ, Bezeichnung und Versionsnummer sowie alle mit dem Produkt in Zusammenhang stehenden Lizenznummern angeben.

Wichtig

Dieses Produkt ist in Teilen urheberrechtlich geschützt. Es darf nicht verändert oder kopiert und ohne Erwerb oder schriftliche Einwilligung des unheberrechtlichen Eigentümers (Sartorius) nicht benutzt werden. Durch die Benutzung dieses Produktes werden obige Bestimmungen von Ihnen anerkannt.

CONTENTS

1	Introduction	7
1.1	General	7
111	Other manuals	7
112	Delivery condition	7
113	PhaseController	7
114	Plug-in cards and slots	8
1.1.4		
2	Operator Interface	10
2.1	Display	10
2.2	Keypad	11
2.3	Entry of alphanumeric characters	12
2.4	Operating concept	13
2.4.1	Operation via softkeys	
2.4.2	Selection via scroll keys	
2.4.3	Selection via key More	14
2.5	Input over external PC-keyboard	15
3	Main Menu	
21	Switching on the PhaseController	16
5.1		
4	Setup	17
4.1	Setup menu	17
4.2	Configuration menu for PhaseController	
4.2.1	Config menu tree	
4.2.2	Changing the configuration	19
4.2.2.1	Digital input configuration	
4.2.2.2	Input configuration of analog card PR1713/07 (PR 5510/07 for Phase-X4)	
4.2.2.3	Digital output configuration Output configuration of BCD card PR1713/08 (PR 5510/08 for Phase-X4)	
4.2.2.5	Output configuration of analog card PR 1713/07 (PR 5510/07 for Phase-X4)	
4.2.2.6	Entry of limit values	
4.2.2.7	Parameters for recipe start	
4.2.2.8	Simulation	
4.2.2.9	Default settings	
4231	Entry of a new text	
4.2.3.2	Editing a text	
4.2.3.3	Deleting a text	
4.2.4	Exit from the configuration	
4.2.5	Printing out the configuration data	
5	Main Program	
5.1	"Start" program	31

Contents

5.2	Recipe start	
5.3	Status display	
5.4	Stopping a phase or recipe	
5.5	Restarting a phase	
5.6	Aborting a phase or a recipe	35
5.7	Manual additions	
6	Applications	
6.1	PhaseController directly at the PC	
6.1.1 6.1.2	System description Examples with local I/O	
6.2	PhaseController connected to a PLC with proxy server	
6.2.1	System description	
6.2.2		
0.3		43
7	Interface	46
7.1	OPC interface	47
7.2	Fieldbus interface	47
7.2.1 722	20-byte FB interface	
7.3	Serial interface	
7.4	Memory and I/O layout	
7.4.1	Memory	
7.4.2	1/0	
8	Proxy (Self Programmer)	57
8.1	Phase	57
8.2	Data exchange	
8.2.1	General	
8.2.2	Data	
o.z.s 8.2.3.1	String from PLC to PhaseController	
8.2.3.2	String from PhaseController to PLC	
8.2.4	Remote control	60
8.3	Debug	62
9	Phases	63
9.1	General	63
9.2	Basic state diagram	64
9.2.1	Survey	64
9.2.2	Commands	64
9.2.3	States	

PHASE Controller Operating Manual

9.2.4	Order of phase handling	65
9.3	Phase types	66
9.4 9.4.1	Phase interface Code	66
9.5	Interface parameters (T_OPC)	68
9.6	Offsets in T_OPC	73
9.7	Phase function blocks	74
9.7.1	Analog on / off	74
9.7.2	Dialogue	75
9.7.3	Discharge	77
9.7.4	Batching	78
9.7.5	Manual addition	
9.7.6	Set and reset bits	
9.7.7	Stop	
9.7.8	Timer	
9.7.9	Waiting for a bit	
10	Error Messages on the Weight Display	85
11	Used Abbriviations	
12	Index	

1 INTRODUCTION

1.1 General

1.1.1 Other manuals

This operating manual describes the operation of Phase-X5 and the differences for Phase-X4 and Phase-X6. Installation and calibration are explained in the installation manuals of instruments PR 5510 for Phase-X4, PR 5610 for Phase-X5 and PR 5710 for Phase-X6.

1.1.2 Delivery condition

The PhaseController standard version does not contain hardware options. The following software licences are included.

- PR1713/32 S88 Phase Batching
- PR1792/13 OPC Server Licence

1.1.3 PhaseController

The PhaseController is designed for realizing batching applications with several scales, which are controlled via recipe management system PR8400 'Sartorius ProBatch+ for Windows'. The PhaseController can be used also for creation of PLC-based batching applications. This manual explains how the PhaseController should be used related to the software. You can use this information also for writing a proxy server for a PLC, if PLC control and data guidance is required. A Proxy Server for a Siemens PLC is available. For additional information, refer to IEC 61131 library FBLib-S88 help.

Rough distinction of two different system layouts is as follows:

- 1. The PC with the recipe manager is connected directly with the PhaseController. Process data handling is done via the built-in inputs and outputs. With this concept, an optional PLC with individual cabling can be connected. See 6.1
- 2. The recipe manager is connected with a PLC. The PhaseController is connected to this PLC. Control and data must be routed by the PLC. See 6.2.

A PhaseController Phase-X5 or Phase-X6 permits connection of a second external weighing point. A weighing point 'C' as sum weighing point (a+B) is not supported.

Survey of other functions

- Tare function
- Configurable digital and analog inputs and outputs

Survey of optional components for the basic instrument versions:

- Digital inputs and outputs
- Serial interfaces
- Analog output (max. 2 cards, fieldbus or Ethernet are not possible)
- Fieldbus in Slot 4 (2nd analog output card and Ethernet are not possible)
- Ethernet in Slot 4 (2nd analog output card and fieldbus are not possible)
- External terminal PR5610/05 as a second operating station
- External weighing point 'B' via DIOS master or XBPI, only Phase-X5 and Phase-X6

1.1.4 Plug-in cards and slots

List of optional retro-fittable modules for PhaseControllers Phase-X4, Phase-X5 and Phase-X6. Max. 3 modules can be built in. Detailed information is given in the relevant installation manuals.

	For Phase-X5 and Phase-X6	Slot 1	Slot 2	Slot 3	Slot 4
PR 1713/04	Serial I/O RS485/422 + RS232	٠	•	•	
PR 1713/06	Analog out	• x1	• x1	• x1	
PR 1713/07	1 Analog out / 4 analog in	• x1	• x1	• x1	
PR 1713/08	BCD out / 24 out, 1 in	• x2	• x3	*	
PR 1713/12	Digital I/O 4/4 opto	*	•	•	
PR 1713/13	DIOS master				
PR 1713/14	Ethernet interface				• x1
PR 1713/15	Digital I/O 4/4 relay	*	•	•	
PR 1713/17	Digital I/O 6/8 opto	*	•	•	
PR 1721/11	Profibus interface, PR 1721/21 with Phase-				• x1
	X6				
PR 1721/12	Interbus interface, PR 1721/22 with Phase-				• x1
	X6				

= Can be fitted additionally

- = Note restrictions due to high current consumption! With a card fitted in Slot 4, a 2nd analog output card in Slot 1, 2 or 3 is not permissible.
- = Can be fitted additionally, but the upper terminal strip is covered by Slot 2.
- = Can be fitted additionally, but the upper terminal strip is covered by Slot 3.
- = Preferable position (digital I/O is initialized, BCD card does not cover terminals)

For Phase-X4		Slot 1	Slot 2	Slot 3	Slot 4
PR 5510/04	Serial I/O RS485/422 + RS232	•	•		
PR 5510/06	Analog out			• x1	
PR 5510/07	1 analog out / 4 analog in	• x1	• x1		
PR 5510/08	BCD out / 24 out, 1 in, CC	•	•		
PR 5510/09	BCD out / 24 out, 1 in, CE	•	•		
PR 5510/12	Digital I/O 6/12 opto	•	•		
PR 5510/13	DIOS master				
PR 5510/14	Ethernet interface				• x1
PR 1721/31	Profibus interface				• x1
PR 1721/32	Interbus interface				• x1

• • x1 = Can be fitted additionally

= Note restrictions due to high current consumption! With a card fitted in Slot 4, a 2nd analog output card in Slot 1 or Slot 2 is not permissible.

2 **OPERATOR INTERFACE**

2.1 Display

The **weight Display** allows display of 7 digits for weight plus a decimal point. The weight unit can be selected as tons, kilograms, grams or lbs. In addition to the numeric output, two text lines can be displayed. The other symbols of the display are listed below:

Status indicator	Description	Status indicator	Description
B G	Gross weight is displayed Gross = Net + Tare (G only active in NTEP mode)	→() ←	The weight value is within center of zero
NET	Net weight is displayed		The weight is in standstill
Т	Tare or initial weight is displayed. This is the weight stored in the memory.	\Diamond	Dosing activ
		X	Flashing indicates alarm

 $/\mathbf{N}$

2.2 Keypad

The key functions are almost identical for Phase-X4, Phase-X5 and Phase-X6. Differences are specified. The keys and functions are:

Indicator keys	Description
B	Gross weight is displayed whilst this key is pressed (<i>B – Brutto, German for gross</i>).
Ĩ	Tare weight is displayed whilst this key is pressed.
	Set and reset tare. The instantaneous gross weight is stored, provided that: - weight is at standstill - indicator is not in error status

Indicator keys	Description	
0	Print out	
WP	Toggle key for switching over between weighing point A, B. No WP-'B' with Phase-X4.	
-()+)	Set gross weight to zero, provided that: - weight at standstill - withing zero set range - not tared	

Menu keys	Description
Exit	Exit from menu, continue operation at next higher level.
Ĉ	Softkey: The function displayed above the key can be selected.
÷	Scroll down in the menu.
(Scroll up in the menu.
More	Display of further menu functions indicated by the double arrow ᠅.

Editing keys	Description	
()	During editing: move cursor left and select values, when 端 is displayed.	
•	During editing: move cursor right and select values, when 🛱 is displayed.	
ОК	Enter / execute / confirm. An additional Enter key is provided for Phase-X6.	
C	Backspace / delete; as a second function via key →。 with Phase-X4	

Function keys	Description
Stop	Stop a running phase

Function keys	Description	
F1)	Programmable function key, without function for PhaseControllers.	
F2)	Programmable function, without function for PhaseController.	

2.3 Entry of alphanumeric characters

In the alphanumeric input mode, a blinking cursor is displayed in the input field. For access to this mode, press an alphanumeric key. Unless the cursor blinks in the input menu with Phase-X4, the More key must be pressed first.

Key	Key	Character	Remark
X5	X4	With X4: only via key More	
1 #"()= 2 ABC		#"()≡\$?!%1 АВСаЬс2	Comma, decimal point or colon can be entered using the dot key
3 DEF GHI		DEFdef3 GHI9hi4	Values with polarity sign are entered also
5 JKL 6 MNO	SILL ST 6HN0	JKLjk15 MNOmno6	by pressing the dot key , once for minus and twice for plus.
7 PORS 8 TUV	+€) →O+ ® TUU	PQRSpars7 TUVtuv8	Complete each entry with key 💌 , also with the enter key for Phase-X6.
9 wxvz -+*/		WXYZwxyz9 -+*/:;_^&,<>	A space can be entered using key 💭.
	€ Jenco	AGUASO80	

2.4 Operating concept

For simplification, only the operation of PhaseControllers Phase-X5 is explained, because the operation of the other PhaseControllers is nearly identical. Where applicable, differences are explained.

2.4.1 Operation via softkeys

The PhaseController operation is menu-guided. For this purpose, the controllers are provided with a softkey functionality. The function of the three softkeys with the upward arrow \bigcirc below the numerical display is as shown above the keys. For Phase-X6, the key layout is \bigcirc .

Selection of menu items is by pressing igsqcup .

If more than three functions can be selected, double arrows indicate that further functions can be displayed and called up by means of key or and . In section 2.3.3, the More keys and their function for Phase-X4 and Phase-X6 are also explained.

Exit from a menu is possible by pressing key . After pressing this key, operation is continued at the next higher level.

2.4.2 Selection via scroll keys

Key arrow down \checkmark can be pressed to go down, key arrow up can be pressed to go up \checkmark in the menu.

Press key $\underbrace{\text{Exit}}$ to leave the menu and to continue operation at the next higher level.

Select the menu item displayed between	by pressing key 📧
• •	· • •

2.4.3 Selection via key More

If the double arrow is displayed between the function texts on the display line for the softkey functions, additional functions are available after pressing key $\boxed{\textcircled{}}$. Unlike Phase-X5, key $\boxed{\textcircled{}}$ is located at the bottom left with Phase-X4. With Phase-X6, key $\boxed{\textcircled{}}$ is located at the bottom right of the alphanumeric keypad.

In the case of Phase-X4, another difference of the key function $\textcircled{2}^*$ relates to text entry or editing. The cursor does not blink after selecting [New] and entry of a text number for a new text! Press key $\textcircled{2}^*$, until the relevant LED is lit $\textcircled{2}^*$, and the cursor blinks. Now, the text can be entered. When pressing key $\textcircled{2}^*$ again, the LED is off and the text can be entered character by character by means of keys $\textcircled{2}^*$. Press key $\textcircled{2}^*$ to complete the entry.

At a text selection, the last selected text is displayed. Scrolling through the existing texts by means of the scroll keys $\textcircled{}_{ac}$ and $\textcircled{}_{ac}$, selection using $\textcircled{}_{r_2}$ and editing by pressing key $\textcircled{}_{ac}$ as described above are possible.

Alternatively, press keys and to enter the number of an existing text. In this case, editing is done also as described above.

2.5 Input over external PC-keyboard

The PhaseController have an alphanumeric key field and a connection for a PC keyboard with DIN-Plug (X5, X6) and PS2-Plug (X4) on the rear side of housing. Thus the operation of the Batch Controller can be made also by an external PC keyboard. Both functions are equivalent and are parallel applicable.

In the delivering condition the external keyboard is adjusted as an US keyboard. If a German keyboard will be used, you have to change the character set with [Strg][F2] into German. With [Strg][F1] you can return again to the delivering condition (US). The LEDs from the PC keyboard will be not triggered.

For detail informations please refer to the Installation Manual.

3 MAIN MENU

As soon as the instrument is ready for operation, the main menu functions are accessible.

```
Phase Controller
Start •Setup •
```

Press the relevant softkey \bigcirc to select the menu items.

Softkey	Function
[Start]	Main program
[Setup]	Configuration, calibration, serial port determination, initial data

3.1 Switching on the PhaseController

After switching on the supply voltage, the name of the PhaseController is shown on the alphanumeric display. The main menu is activated only now.

Installing further options cards, or re-inserting them into another socket must be done before data entry. After installation of an option, a [Cold] start is required.

The boot menu can be reached in the following three ways:

1. Menu [Setup]->[Reboot], [Warm] start possible.

2. Press key when switching on the instrument.

3. Press keys $6^{\text{(step)}} + 8^{\text{(step)}}$, ([Setup]->[Software Parameter]->[Reset on stop+exit] = 1 or 5 s.), whereby [Warm] start is not possible. This key combination should be set to "disabled".

Please, note that a [Cold] start is permissible only in defined cases (e.g. after installing a new options card), because all data which are not stored in EPROM or EAROM will be lost !!

For further details, see the relevant chapter in the installation manual.

4 Setup

4.1 Setup menu

The [Setup] menu is described in the installation manual. In this manual, only the selection of the application-specific configuration parameters is explained.

To prevent the access of unauthorized persons to the set-up menu, disabling by means of a key switch is possible.

Please, note that the calibration data must not be changed any more after entry of weight data. When changing e.g. the weight unit from kg into lb subsequently, a cold start is required. All RAM data (database tables, etc.) are lost.

The structure of the setup menu is:

Setup

- Configuration	Follows in this section
- Weighingpoint(s)	in the installation manual
- Set Clock	in the installation manual
- Serial Ports	in the installation manual
- Software Parameter	in the installation manual
- Show Boardnumber	in the installation manual
- Licence Setup	in the installation manual
- Print Setupdata	in the installation manual
- Print last fault	in the installation manual
- Refresh Display	in the installation manual
- I/O Slots	in the installation manual
- Show Version	in the installation manual
- Enable download	in the installation manual
- Reboot	in the installation manual

4.2 Configuration menu for PhaseController

The specific configuration data are entered in this menu. These data are stored in RAM and a back-up is provided in the EAROM.

Press 💭 to select [Setup] .	Phase Controller Start •Setup •	
Press \checkmark or \checkmark to select [Config] and confirm with \checkmark .	Setup	
Leave the setup menu with Exit.	+Config	†

Note:

Before handling 'Config', all other configurations should have been handled already. 'Software Parameter' contains a value for 'S88.01 interface'. This parameter for the firmware must be set to 'off', although the PhaseController communicates according to the rules for S88.

Fieldbus parameter 'Scale interface' in the PhaseController must be set to 'disabled'.

With "Change", the configuration parameters can be changed.

"Text" permits editing of the pre-set messages for the manual and dialogue phases.

Press "Print" for print-out of the configuration parameters on the printer interface.

If licence PR1713/32 S88 Phase Batching is not provided, a warning message is displayed during two seconds.

Activate the "key switch locking" with the SPM-Bit MX08 to prevent access to the configuration. A warning message is displayed during two seconds.

Unless the system clock is not running (clock not set), an error message is displayed.

The configuration is finished. With Phase-X4, the clock runs immediately after switching on.


```
No batching license
```

Locked by key switch

Clock not set

4.2.1 Config menu tree

4.2.2 Changing the configuration

Press [Change] to change the configuration parameters.

Confi	surat	ion
Chang	et Te	xt

4.2.2.1 Digital input configuration

An address can be allocated to the individual inputs so that the input status is copied continuously into this address. All addresses of the virtual SPM and the related functions are possible. See chapter Virtual SPM.

Generally, more than one input can be allocated to an address. In this case, the input with a higher card number and / or input number will overrule. Inputs without function are given address '-1' or '0'. The card type and the available inputs and outputs are detected automatically. Functions for a second weighing point can be selected, but without a second weighing point, they are not allocated.

Select the parameter [Input config.] by pressing $\boxed{\infty}$.

+Input confis. t

config.

Ť

I/0

Input

+Slot

A configurable card with digital inputs fitted in this position is indicated with "I/O". Select the card position and press $\boxed{\text{ok}}$.

For Phase-X4, the menu indicates Slot 1 instead of card 1.

Unless a card with digital inputs is fitted in this position, "no input" is displayed. The card is not usable for an input configuration.

Select the input by means of the cursor keys. Enter the address for this input.

Exit finishes the entries for this card position.

Configure other plug-in cards as described above. Press to finish the input configuration.

Ιr	ìÞ	U	÷		C	O	n	f	i	9.						
4 S	51	O	t		2			Ť		no	i	'n	Þ	U	t	
				4		Ŧ				i					4	
51	. 0	t		1		Ι	n	P	U	t			Ļ		1	•

Input	СО	nfig.	
+Slot	1	†	I/O

4.2.2.2 Input configuration of analog card PR1713/07 (PR 5510/07 for Phase-X4)

With an analog input card PR1713/07, no values need to be configured. The four analog values of the card with the lowest slot number are copied into word addresses MW 4 to MW 7 automatically. See chapter Virtual SPM.

Digital output configuration 4.2.2.3

An address can be allocated to the individual outputs so that the state of this address is copied to the output continuously. All addresses of the virtual SPM and the related functions are permitted. Outputs without function are given address '-1' or '0'.

Card type and available inputs/outputs are detected automatically. Functions for a second weighing point can be selected, but without a second weighing point, they are not allocated.

Select parameter [Output config.] by pressing $\underbrace{\circ \kappa}$.	+UUTPUT CONtis
A configurable card with digital outputs fitted in this position is indicated by "I/O". Select the card position and press $\boxed{\text{ox}}$. For Phase-X4, the menu indicates Slot 1 instead of card 1.	Output confis. +Slot 1 +

Unless a card with digital outputs is fitted in this position, "no output" is displayed. The card is not selectable for an output configuration.

Select the output by means of the cursor keys. Enter the address for this output. Configure further cards as described above.

tinishes the entries for this plug-in card position.

^{Exit} finishes the output configuration.

+UUTPUT CONtig.	

÷

0	U	t	p	U	t c	onf	i9.	:
÷	S	1	O	¢	2	Ť	no	output

S	1	O	÷		1		0	١	t	p	l,	1	÷		4		1	Ť
5	P	М		В	i	¢	ä									6	4	

Output	config.	
+Slot :	. †	I/O

4.2.2.4 Output configuration of BCD card PR1713/08 (PR 5510/08 for Phase-X4)

The BCD card can be inserted into any slot, however, Slot 3 is preferable for Phase-X5 due to mechanical reasons. The mechanical limitations for mounting adjacent cards are described in the installation manual.

See also chapter 1.1.4. Switch-over from BCD to digital outputs deletes all output functions for this slot.

Card PR1713/08 is configurable as

1) digital output card with 24 outputs and one input. Configurable like a digital I/O card.

- 2) scale BCD output for
- gross weight,
- net weight,
- tare or
- following the display.

5 decades are displayed. On scales with more than 5 digits, only the first 5 digits are displayed. All data relate to the weighing point selected in parameter "Source of data".

Data output:

Bit 0 to 19:	5-digit weight value
Bit 20:	negative
Bit 21:	standstill
Bit 22:	valid value
Bit 23:	tared

Select the slot on which the PR1713/08 card is fitted and $\boxed{1}$

U	U	¢	P	U	ţ	\square	0	Ľ	۱ť	i	9		
4	S	1	O	t	3		t					I/0	

The mode selected last (digital or BCD) is displayed.

Select mode "digital" and press or Continue operation as with normal digital I/Os (see above) or	+Mode of output \$ BCD	+
select mode "BCD" and press 🔍		
Selection is fromWP AWP B , only with Phase-X5 and Phase-X6	+Source of data: \$ WP-A	1

If a weighing point was selected (WP-A, WP-B), the weight mode can be displayed:

- gross weight
- net weight
- tare
- following the display

Press $\overline{E_{xit}}$ to finish the slot configuration.

+BCD value t t Brutto t

0	U	÷	p	U	÷	C	O	n	÷	i	9		
4	S	1	O	÷		5	Ť					IZO	

4.2.2.5 Output configuration of analog card PR 1713/07 (PR 5510/07 for Phase-X4)

The analog output can be inserted on Slot 1, 2 or 3 (only Slot 3 for X4). Generally, selection is between weighing data and SPM values. Dependent on data source, further parameters are configurable. See also chapter Plug-in cards and slots.

Select the slot on which the PR1713/07 card is fitted.	Output config. +Slot 3 t Analog
 Select parameter "Source of data": A weighing point A B weighing point B, only with Phase-X5 and Phase-X6 External from the value in SPM address MW3 (DWORD) in the virtual SPM. ¹ 	+Source of data: † \$ WP-A \$
Only WP: Select the value fromGrossalways gross weightNet / grossnet weight -> in tared condition, gross weight -> in non-tared conditionNet / OmAnet weight -> in tared condit., OmA -> in non-tared conditionNet / 4mAnet weight -> in tared condit., 4mA -> in non-tared conditionNet / 4mAnet weight -> in tared condit., 20 mA in non tared condition-> 20mA	+Analos value † ‡ Gross ‡
Select parameter "Analog range"Select the following options using the scroll keys:420mA:0 to FSD results in output 4 20mA020mA0 to FSD results in output 0 to 20mA	+Analos ranse t \$ 420 mA \$
 Only WP: Select parameter "If ADC error" Press the scroll keys to select the following options: OmA analog error results in output 0mA 4mA analog error results in output 4mA 20mA analog error results in output 20mA hold The last value is held 	+If ADC error t \$ 0 mA \$
 Only WP: Select parameter "If below zero" Press the scroll keys to select the following options: OmA below zero results in output 0mA 4mA below zero results in output 4mA 20mA below zero results in output 20mA hold The last value is held 	+lf below zero t \$ 0 mA \$
Only WP: Select parameter "If above FSD" Press the scroll keys to select the following options: OmA above FSD results in output 0mA 4mA above FSD results in output 4mA 20mA above FSD results in output 20mA hold The last value is held	+If above FSD t \$ 0 mA \$

¹ Scaling: output current = *value in MW3* * 1 μA (within 0 and 20 mA)

"Exit" finishes the slot configuration.

4.2.2.6 Entry of limit values

For each weighing point, two limit values can be entered. The evaluation signal of each limit value can be used e.g. as a digital output. The limit values are stored as a sequence of numbers (as on the weight display). If the scale of the relevant WP is changed, the weight value might change. After changing the scale, the limit values should be checked. Each limit value comprises two parameters: switch-on point and switch-off point for definition of a hysteresis. All limit values are entered according to the same schematics.

The limit values for WP-A are:

- "WP-A: limit 1 on"
- "WP-A: limit 1 off"
- "WP-A: limit 2 on"
- "WP-A: limit 2 off"

With a second weighing point, another 4 values must be configured (omitted for Phase-X4).

Select parameter [Limit config.] by pressing 💌 .

Position the cursor keys on the limit value to be configured and enter the required value.

łLimit	config.	t
+WP A:	Limit 1 on 0.890	t kg

Example:

The output signal of limit value switch 1 switches OFF above 900 kg, limit value switch 2 switches OFF below 290 kg. The two limit value switches have a hysteresis of 10 kg. With power failure (the two limit value switches are OFF), the switches indicate underfill and overfill simultaneously.

If the limit values for ON and OFF are equal, the limit value switch switches ON, when the weight exceeds the value, and OFF, when the weight drops below the value.

4.2.2.7 Parameters for recipe start

The recipe start dialogue is used for starting a recipe locally at the instrument (Remote PC operation). Configuration of the recipe start dialogue permits definition which parameters should be used and how they should be used. The dialogue is very similar for all parameters.

Select paramet	ter with $\boxed{\circ \kappa}$.	+Parameter conf.	†
The start parar Unused: Input: Predefined:	neter adjustment can be different. the parameter remains empty the operator must enter the parameter during recipe start. a fixed valure is used as a parameter. In this case, the parameter must be entered now.		
Number of the predefined)	production line to be used (input,	+Production line \$ Predefined	† ‡
Customer iden predefined par batch report.	t (unused, input, predefined). An input or ameter is included additionally in the	+Customer ident \$ unused	† ‡
Order ident: Na predefined) An input or pre additionally in	ame or number (unused, input, edefined parameter is included the batch report.	+Order ident \$ unused	† ‡
Production nu (unused, input An input or pro additionally in	mber: Enter the production number t, predefined) edefined parameter is displayed the batch report.	+Production number \$ unused	† ++
Repeat recipe: (unused (1 tin	Number of productions of the same recipe nes), input, predefined)	+Repeat recipe \$ unused	† ‡

4.2.2.8 Simulation

This function is used only during commissioning, for automatic batch without load cells. With fine flow, the speed is 0.2 times as high as the coarse flow. With discharge, the speed is 5 times as high as the coarse flow. Simulation is used for phases B1 ... B6 and B8.

Select parameter by pressing $$	+Simulation	†
Select either 'yes' or 'no'.	+Simulation A \$ yes	† ‡
If 'yes' was selected, the coarse flow speed can be determined.	+Coarse speed 50 ka/mi	t n

4.2.2.9 Default settings

Inputs

only Slot 1

Input number	Function
1	MX 130
2	MX 131
3	MX 132
4	MX 133
5	MX 134
6	MX 135

Outputs only Slot 1

Output number	Function
1	MX 36 coarse flow
2	MX 37 fine flow
3	MX 38 discharge
4	
5	MX 140
6	MX 141
7	MX 142
8	MX 143

Analog output

i i i i i i i i i i i i i i i i i i i	
Analog output	gross weight of WP-A
Analog range	420mA
Analog error 1 ADC	0=0mA
Analog error 2 <0	0=0mA
Analog error 3 >FSD	0=0mA

Parameter

Parameter	Value
Limit values	0 in the format of the relevant scale
Start parameters	
Production line	predefined
Customer ident	unused
Order ident	unused
Production number	unused
Repeat recipe	unused
Simulation	
WP-A	No
WP-B	No

4.2.3 Entry of predefined texts

Manual and dialogue phase can work with predefined messages. In this case, the text field for 'Dialogue' contains the parameter 'dialog', 'dsp1' and 'dsp2'. The appearance and behaviour of the dialog is defined by a numeric code:

'dialog' = 01...09: the texts are set in the text field. dsp1='Text line 1' und dsp2='Text line 2' 'dialog' > 10: the texts will be taken from the database and need not be transmitted.

The texts are stored in a database. A text is identified by the text for line 1 and a unique number within 1 ... 999. For line 2, any text is possible (can also remain empty). The maximum length of the two texts is 20 characters. (See dialogue phase).

.....

Press [Text] for editing of predefined texts.

	Changet	Text	tPrint	
Г				
	lext New •	Edit	■ Del	

Configuration

The database can be edited with [New], [Edit] and [Del].

4.2.3.1 Entry of a new text

Press [New], see also the hints given below for Phase-X4.

Enter a number within 1 and 999 and press \bigcirc . This number is used to address the text.

Enter the text for line 1 and press \bigcirc . This text is used also for identification of the database entry, i.e. it must not be empty.

Enter the text for line 2 and press or . The text must correspond exactly to what it should be like subsequently. When using the text with a function which uses softkeys, the typical icons are inserted in the display (by replacing the character in the text). This text may remain empty and can contain the text of a dimension for numeric entries.

In the dialog, the two text entries would result in the following display:

	46	: . :W				E	d	i	ţ			De	21
Νı	յր	ıb	er		0	f		t	8	×t	:		2
4	Γe	×	t;	1	i	n	9	Ω	Ь	1 or	÷	?	

+Text	line	2	†
Yes			No

	Abort	?
Yes		No

4.2.3.2 Editing a text

Press [Edit], for Phase-X4, see also hints in section 2.3.3.	Text	
Select by pressing key 🔊.	New • Edit •	Del
Select text and press $\underbrace{\circ}$. With Phase-X4, press key $\underbrace{\circ}$	+Warning:	† 1
first, select the text and press \bigcirc .		1
This text is also content of the first line and can be	+Text line 1	†
edited. Text line editing is similar to entry. Press $\underbrace{\circ \kappa}$.	Warning:	
	+Text line 2	Ť
Edit the text of line 2 and press M.	Yes	No

Press \underbrace{Exit} to leave the edit mode.

After selecting [Edit], the text selected last is displayed. Scroll through the existing texts by means of scroll keys $\textcircled{1}_{\text{res}}$ and $\textcircled{1}_{\text{res}}$, select with $\textcircled{0}_{\text{res}}$ and edit by means of key $\textcircled{1}_{\text{res}}$ as described above. Alternatively, an existing text number can be entered after pressing keys $\textcircled{1}_{\text{res}}$ and $\textcircled{1}_{\text{res}}$. In this case, handling is done also as described above.

4.2.3.3 Deleting a text

Press [Del].

Select text and press $\overline{\mathsf{ok}}$.

Reply [Yes] to delete the text.

Press **Exit** to leave the delete mode.

Text New	• Ed	it =	Del
∔Warn	ins:		* 1
Delet Yes	e tex "	†. ∎	No

4.2.4 Exit from the configuration

From the configuration main menu Press key "Exit"

During parameter selection

Press key

When parameters were changed, the following menu is displayed:

- Yes The changed parameters are stored in EAROM.
- No All changes are cancelled.
- Exit handling can be continued

Store	data	?	
Yes	ш		No

4.2.5 Printing out the configuration data

When printing the first line, checking, if printing was possible is done. In case of printer failure during printing, there is a timeout of 2 sec for every print line. The print-out cannot be changed by means of 'Nice Lable Express'.

From the configuration main menu

Select [Print].

All data and predefined texts are printed out.

If printing is not possible, because no printer interface was selected in [Setup]-[Serial Ports], the following message is displayed during 2 s: Configuration Changet Text tPrint

printing ...

Could not print

Print-out example:

```
Configuration data PhaseController - Rel 1.00
Date: 2004.10.28 12:48
_____
Input configuration
Slot 1: Digital inputs
                  130
131
  Input 1:
  Input 2:
                     132
  Input 3:
                     133
  Input 4:
  Input 5:
                     134
  Input 6:
                     135
 Slot 2:
                    No function
 Slot 3:
                     No function
Output configuration
Dutput configurationSlot 1:Digital outputOutput 1:36Output 2:37Output 3:38Output 4:0Output 5:140Output 6:141Output 7:142Output 8:143Slot 2:No functionSlot 3:Analog output
                     Analog output
  Source of data: WP-A
  Analog range:4..20mAAnalog value:GrossADU error:OmABelow zero:4mAAbove FSD:20mA
  Above FSD:
                     20mA
Limits
 WP-A: Limit 1 on 1.000 kg
 WP-A: Limit 1 off 0.900 kg
 WP-A: Limit 2 on 4.500 kg
 WP-A: Limit 2 off 4.600 kg
WP-B: Limit 1 on 0.0 kg
WP-B: Limit 1 off 0.0 kg
WP-B: Limit 2 on 0.0 kg
WP-B: Limit 2 off 0.0 kg
Parameter
Production line 1
Customer ident unused
Order ident unused
 Production number unused
 Repeat recipe unused
         Line 1
Text #
                                   Line 2
_____
          Warning: Mixer is not running
     1
        Setpoint:
Take a sample
    2
    21
                                               OK
    47 Product code:
```

5 MAIN PROGRAM

'Start' activates the operator interface. For using phases **manual addition** and **dialogue**, the operator interface ('Start'-Programm) must have been activated. Production is also possible, when the operator interface is not active. The display remains dark, as long as no phase is running. For a local operation (e.g. phase stopping or tolerance alarm acknowledgement), the operator interface must have been started previously.

5.1 "Start" program

Select the main program from the initial status:

Press key [Start]:

Phas	seCo	ntrol	ler
Star	∿† ∎	Setur	

As long as the display remains dark, no phase is running. In this state the status of an activ phase is visualised. A local operator may send a recipe start request to the host system (ProBatch+)

Key $\underbrace{\text{twit}}$ can be pressed at any time to call up a dialogue.

The operator has to press [End] Now the program is in the initial status again.

Press [No] The program returns to the operator interface.

Press [Yes] The start menu is displayed. See section 'Recipe start'.

If licence PR1713/32 S88 Phase Batching is missing, a warning message is displayed during two seconds.

5.2 Recipe start

The PhaseController does not know recipes, but may send a recipe start request to the PC (ProBatch+). The recipe start is done on the PC.

Key to can always be pressed to call up a dialogue from the operator interface. This could also be done during a running phase visualisation.

When replying 'Yes', the recipe start dialogue is displayed. The dialogue is dependent on the configured recipe start parameters.

Before a recipe can be started, the name and several parameters must be stored in a database.

If the recipe name is still not stored in the database, it can be created by pressing 'New'.

Subsequently, the unit for the setpoint must be entered.

Start Yes	re	cipe No	ш	End
+Shamp Start	•oo	Nou	۳Ŋ۵	t lata

Recipe concrete

Weight dimension 1 \$ k9

The 2 text lines are deleted.

Start recipe Yes = No = End PhaseController Start =Setup =

No batching license

When pressing key 'Del', the name of the recipe is

removed from the database without further prompts. If the recipe exists in the datbase, it can be selected by means of the scroll keys and started by pressing key 'Start'.

Dependent on the start parameter configuration, a different number of parameters are prompted before starting.

Enter the number of the production line to be used.

Name of the customer

Order ident

Production number

Setpoint

Number of cycles required for this recipe.

Now, the recipe can be started:

During recipe start, the PhaseController communicates with the PC. The communication status is displayed:

'Start ...' if the recipe start request will be send

'Started' if the PC has accepted the start request

'Could not start', if the recipe could not be started. In case of error, a message is sent to the PC alarm table.

Starting a recipe takes some time.

Produktion line

1

Customer Meier GmbH

Order ident AN 17-30005

Production number 80007

Setpoint

100 kg

Repeat recipe 1 times

Start now Yes = - No

Status display 5.3

During an activ batch the status of the phase on the PhaseController and the status of the recipe on the PC is displayed.

Between the weighing point 'A' and 'B' the visualisation could be switched with the 'WP'-key. The status display can indicate either the recipe status or the status of the current phase.

Press 'More' for switch-over between the following two displays.

Status display for the **recipe**: Line 1 contains the recipe name. Line 2 shows the production line and the recipe line number. The status display for the recipe has only one display level.

Status display for the current **phase**:

Line 1 contains the phase name (e.g. the material). Line 2 contains the current status, a value or an alarm.

If the status display is set to phase status, more information than fitting into a display level can be displayed. For this reason, a phase has at least two display levels. The various levels are accessible via \rightarrow and \frown . The display is dependent on the current phase type.

Status display for the **phases**:

'Diff:' indicates that further batching is required to reach the setpoint. Status display for the phases : 'Setpoint:' is the material weight which is batched	Water Diff: Water Setpoint:	123.45	ka ka
according to recipe by this phase. Status display for the phases : '+Tol:' indicates the permissible tolerance	+Tol: -Tol:	2.00	kg ka
Status display for the phases : 'Dosing:', 'Status:' or 'Alarm:' informs you on the phase status: (see table below)	Water Dosing:	Coarse	
Status display for the phases : Tolerance alarm with a manual component.	Tolerance: Cont.:	24 •Aboa	kg ard
No phase is activ.			

Phase status during display: 'Dosing.' 'Status.' or 'Alarm.'

Lozenge	Display	Status	Phase type
on	Status: SPM input	The phase is waiting for enable signal, coming from hardware. The input at address SPMin (configuration parameter) is used.	all with enable input
on	Dosing: Coarse	The phase is transporting material in coarse flow.	dosing
on	Dosing: Fein	The phase is transporting material in fine flow.	dosing
on	Differenz:	Display difference value	dosing
on	Setpoint:	Display setpoint value	dosing
on	Tolerance	Display tolerance values	dosing

Water		
Status:	SPM	Input

Line: 8

Concrete

PL: 1

on	Time:	Display the time of a timer component	dosing
on	Status: Discharge	The phase is discharging.	discharge
on	Status: Calming	The phase is waiting some time (dosing, discharge
		configuration parameter).	
blinking	Status: Stopped	The phase was stopped. Pressing 'Stop'	all
_		allows to terminate or continue the	
		phase.	
on	Status: Done	The phase waits for reset after finishing.	all
on	Status: Wait	Wait-component activ	dosing
blinking	Alarm: Stopped	The phase was not started due to a wrong	dosing
		parameter in the text field.	
blinking	Alarm: Aborted	Waiting for reset after aborting the	all
		phase.	
blinking	Alarm: Tolerance	A tolerance alarm was detected. The	dosing
		phase is in held state. Pressing 'Stop'	
		allows to terminate or continue the	
		phase.	
blinking	Alarm: Parameter	parameter of the phase is wrong	
blinking	Alarm: License	The batching license is missing	

A flow warning is not displayed.

5.4 Stopping a phase or recipe

Press the red 'Stop' key to set a running phase into status HELD. A menu instead of the status is displayed.

Press keys \bigcirc and \bigcirc to switch over between the menu for phases and recipe

In the phase menu, the stopped phase can be restarted or aborted.

In the recipe menu, the recipe can be stopped or aborted.

Only recipes from the local database are stopped or aborted. Unless the recipe can be found, a message is displayed.

Press key [Back] to return to the status display. The current phase or recipe status remains unchanged. Phase Contin• Abort• Back

Recipe Stop • Abort• Back

Shampc Not ir	o database	
Water N: ff:	107 45	Ŀ.e

5.5 Restarting a phase

The phase is in status HELD.

rhas(
Cont	in∎	Abort	• Back

Press 'Contin' to continue the phase.

5.6 Aborting a phase or a recipe

Phase The phase is in status HELD. Back Contin. Abort. Press \rightarrow and \leftarrow for switch-over between the menu for Recipe phases and recipe. Stop • Abort• Back In the recipe menu, the recipe can be stopped. 'Abort' terminates the phase or recipe without further prompts. Whilst the recipe is aborted, the PhaseController communicates with the PC. Aborting the recipe will lead to recipe stopping. During stopping, the communication status is displayed: 'Stopping ... and during aborting: 'Aborting ...' 'Aborted' The execution of this commands is done on the PR8400 on the PC and may take some time during communication. If this command could not be accepted by the PC, 'Could not stop' or 'Could not abort' is displayed. Only recipes from the local database are stopped or Shampoo aborted (recipes that have been started from this device). Not in database Unless the recipe can be found, a message is displayed.

5.7 Manual additions

Manual batch modes (D1 or D2) can be acknowledged:

- by activating the bit addressed with SPMin or
- by means of key 'OK'.

In a configuration with two weighing points, manual batching on the non-displayed weighing point may be required.

When weighing point 'A' is selected for display and manual operation is to be done on weighing point 'B', the following message is displayed at regular intervals: For manual batching, the display must have been set to B by means of key 'WP' previously in this example.

Example of a dialog during a manual batching:

+++ B: Manual

Charse number 1556830
6 **APPLICATIONS**

6.1 PhaseController directly at the PC

6.1.1 System description

In the simplest case, the PhaseController is connected to the PC directly via a serial line or via Ethernet. Recipe management with the PR8400 ProBatch+ program runs on the PC.

The ProBatch+ is configured in open mode for the PhaseController. Recipe control is in the batch server.

The batching devices with PhaseController X4/X5/X6 are connected via serial line or via Ethernet.

The batch server can communicate with several batching devices via the PR1792 OPC server.

At batch start, the recipe remains in the PC. Only the data of the instantaneously active batch phase is downloaded into the batching device, and started.

The batching device handles the batch phase independently. ProBatch+ and the PhaseController visualize the status.

Please, note that the (coarse and fine) hopper valve(s) are connected with the batching device. There is no need to use an external PLC for further processing of these output signals.

SPM output and SPM input address must be specified in the component parameters of PR8400 ProBatch+. The addresses are grouped. The analog input and output components excepted, the SPM addresses are individual bits. Analog components A1 and A2 address words. The following table describes the various **virtual SPM** groups. :

SPM address		Eurotion	
Word %MW	Bit %MX	Function	
	047	System data, e.g. coarse flow or fine flow WP-A or WP-B, tared, etc.	
		(for details, see virtual SPM)	
3		Data for an analog output card	
47		Data from an analog input card	
	128255	SPM addresses which can be used freely by the user for I/O functions	
		with the digital hardware interface.	
	256511	Fieldbus interface. Not relevant in this application.	
	512 575	AND-combinations	

6.1.2 Examples with local I/O

In this examples, all inputs and outputs are switched directly by the PhaseController. There is no PLC control intervention. The PLC does not use data of this weighing point, which could be made available by a possible proxy.

Example 1:

In the ProBatch+ program, the following components for WP-A were defined: Component 'Flour' with batch mode B1 uses SPM output address: 128 Component 'Sugar' with batch mode B1 uses SPM output address: 129

When a recipe uses these components, the actual component data are transmitted to the PhaseController, and started.

In the PhaseController, the valves should be switched directly by the digital output card. Output 1 is configured with address 36 and is active, when the coarse flow is activated by batching. Output 2 is configured with address 37 and is active, when the fine flow is activated by batching. Output 3 is configured with address 128 and is active, as long as component 'Flour' is active. Output 4 is configured with address 129 and is active, as long as component 'Sugar' is active.

Example 2:

In the ProBatch+ program, the following component for WP-A was defined: Component 'Controller' with batch mode A1 uses SPM Word output address: 3

In the PhaseController, the analog value should be output directly by the analog output card. The analog output card is defined as 'external'. The value of component 'Controller' is output as an analog signal.

Example 3:

In the ProBatch+ program, the following component for WP-A was defined: Manual component 'Manual' with batch mode D1 uses SPM input address: 31

In the PhaseController, the manual addition should be acknowledged with a digital input. Input 1 is configured with address 131. This adress is TRUE when the input is activated. The component is also acknowledged by pressing the 'OK'-key.

Example 4:

In the ProBatch+ program, the following component for WP-A was defined:

Manual component 'Dialogue' with batch mode D4_DIALOG is used.

The additional parameter is set with: "dialog=11". '1x' is used to read the dialogue texts from the local PhaseController database (entry number 1). The parameter dsp1 and dsp2 are ignored. 'x1' should be used for local read-in of an integer value by the operator.

In the PhaseController, a dialogue should be held and an integer value should be read in. The dialog is enabled by means of a digital input.

With 'Setup' -> 'Config' -> 'Text', a database entry with number 1 containing the display texts should be done. When the component is active, the operator can enter a value and complete the input with 'OK'.

Block diagram

In the program ProBatch+ the components 'Flour', 'Sugar' and 'Controller' were defined as above:

When a recipe in the PC (ProBatch+) uses a component, the data neccessary for batching of the activ component are transmitted to the PhaseController.

In the PhaseController, the valves should be switched directly by the digital output card. A mixer should be controlled with an aanalog output value. For this purpose, the inputs and outputs must be configured.

Input configuration:

Input 1: 140 (enable signal)

Output configuration:

Card 1:

Output 1: 36 (active, when the coarse flow is activated by batching) Output 2: 37 (active, when the fine flow is activated by batching) Output 3: 128 (active, as long as component 'flour' is active) Output 4: 129 (active, as long as component 'sugar' is active)

Card 3:

The analog output card is configured as 'external. The value of component 'Controller' is output as an analog signal.

6.2 PhaseController connected to a PLC with proxy server

6.2.1 System description

For further processing of coarse and fine flow signals as well as component signals from the various weighing points by means of logic functions with process data from the production line, connecting of a PLC between batching controller and PC is purposeful.

The external PLC can be used for programming any logic data functions. For instance, a batch start request can be delayed, until all required material paths are enabled. Or the resources used in common, e.g. product paths, hoppers and valves, can be switched. During PLC programming, the PLC logic can be coordinated with the ProBatch+ recipe procedure. This mode can be used also, when special production steps which are controlled exclusively by a PLC are required. Then a phase is running inside the PLC inself.

The proxy server for the PLC is a program, which only routes all data without hinderance. The batching device function can be checked. In practice, this program is extended by the actual PLC working program.

ProBatch+ is configured in open mode for the PhaseController. The recipe control runs in the batch server.

The batching devices with the X4/X5/X6 PhaseController are connected with a Siemens PLC e.g. via Profibus. The batch server can communicate via the OPC server to one or more PLC with several batching device each. For each PLC-type a specific OPC-Server is needed (e.g. Siemens).

When starting a batch, the recipe remains in the PC. Only the data of the instantaneously active batch phase is downloaded into the batching device via the proxy server in the PLC, and started. Any logic data processing functions with these data can be programmed in the PLC.

The batching device handles the batching phase independently. ProBatch+ and PhaseController visualize the current status.

The SPM output and SPM input addresses must be specified in the PR8400 ProBatch+ component parameters. The addresses are grouped. The analog input and analog output component excepted, the SPM addresses are individual bits. Analog components A1 and A2 address words. The following table describes the various groups.

SPM address		Function	
Word %MW	Bit %MX		
	0 47	System data, e.g. WP-A or WP-B coarse flow or fine flow, tared, etc.	
		(for details, see virtual SPM)	
3		Data for an analog output card	
47		Data from an analog input card	
	128 255	SPM addresses to be used freely by the user for I/O functions with the	
		digital hardware interface.	
16 19	256 319	This data area (8 bytes for weighing point A) is read cyclically via the	
		fieldbus and transmitted to the PLC by the PhaseController. The data	
		area can be addressed by words or individual bits.	
20 23	320 383	In this data area (8 bytes for weighing point A), data are written into the	
		PhaseController cyclically by the PLC via the fieldbus. The data area can	
		be addressed by words or individual bits.	
24 27	384 447	This data area (8 bytes for weighing point B) is read cyclically via the	
		fieldbus and transmitted to the PLC by the PhaseController. The data	
		area can be addressed by words or by individual bits.	
28 31	448 511	In this data area (8 bytes for weighing point B), data are written into the	
		PhaseController cyclically by the PLC via the fieldbus. The data area can	
		be addressed by words or by individual bits.	
	512 575	AND-combination of 128159 and coarse/fine signal of WP-A/B	

The following table describes the various virtual SPM groups:

6.2.2 Example with I/O via PLC

In this example, PLC control intervention is demonstrated. Using the weighing point data made available by the proxy, the control signals are switched by the PLC.

Example 1:

In the ProBatch+ program, the following components for WP-A were defined:

component 'Flour' with batch mode B1 uses SPM output address: 256.

The SPM input address was set to 320. For starting the phase, the batch controller waits, until the bit on address 320 is set.

When a recipe uses this component, the data are transmitted to the PhaseController via the PLC. When component 'Flour' is active, the bit on address 256 in the PhaseController is set. This data area (MX256 ... 319) is transmitted to the PLC cyclically by the PhaseController.

An application program in the PLC detects bit 256 256 (DB201.DBX384.7 in a Siemens PLC) for component 'Flour' and prepares the transport route for the material. During this time, the PhaseController waits for bit 320 (enable signal). When the transport route is running, the PLC sets bit 320 (DB201.DBX392.77 in a Siemens PLC). This data area (MX320 ... 383) is transmitted cyclically from the PLC to the PhaseController.

The PhaseController detects the set enable signal and starts batching. The phase status with coarse and fine flow batching is connected with the component signal (256) in the PLC aplication program and sent to a digital PLC output card. Valve control switching is done by the digital PLC output cards. After completing the PhaseController reset the component bit 256.

Example 2:

The PLC controls the r.p.m. of a mixer. The recipe contains a line with an A1 component (analog output).

SPM output is set to word address 17 in the PhaseController. This data area is transmitted cyclically from the PhaseController to the PLC.

The PLC reads the value of this address and adjusts the mixer r.p.m., which was defined in the recipe setpoint. This r.p.m. is sent to an analog PLC output card.

PhaseController	corresponds	SPS (Siemens S7)
	to	
MX 256		DB201.DBX384.7
MX 257		DB201.DBX384.6
MW 17 (MX 272287)		DB201.DBX386.7
		DB201.DBX387.0
MX 320		DB201.DBX392.7

Both bit 256 and word address 17 are within MX 256 ... MX 319 (length 8 bytes) and transmitted from the PhaseController to the PLC cyclically. In the PLC, these data in the structure for WP-A are within MB 384 and MB 391.

Bit 320 is within MX 320 ... MX 383 (length 8 bytes) and is transmitted cyclically from the PLC to the PhaseController.

6.3 Virtual SPM MEMORY

To avoid conflicts between system variables and process interface, a 'virtual SPM' as part of the overall SPM was introduced. Thus the remaining SPM is protected against access by PC and PLC. This is an area of 64 bytes. The basic address is %MB 400 -> %MB 0.

All SPM addresses defined in components (SPMIn / SPMOut) with ProBatch+ (SPMIn / SPMOut) refer exclusively to the addresses of the virtual SPM. A phase is set to HELD automatically, when the address is beyond this range. Exception: -1 and 0 are ignored, the 'input' is always set TRUE.

Relative address	Туре		Function
MX 0	BOOL		Reserved for the system
MX 1	BOOL	out	TRUE when the phase is running
MX 2	BOOL	in	The rising flank stops all phases
MX 8	BOOL	in	TRUE blocks 'Setup'
MX 9	BOOL	in	TRUE blocks closing of the operator interface
MX 10	BOOL	out	Limit value 1 WP-A
MX 11	BOOL	out	Limit value 2 WP-A
MX 12	BOOL	out	Limit value 1 WP-B
MX 13	BOOL	out	Limit value 2 WP-B
MX 32	BOOL	out	Data for WP-A are valid
MX 16	BOOL	out	Tolerance alarm WP-A
MX 17	BOOL	out	Flow-warning WP-A
MX 18	BOOL	out	Held WP-A
MX 24	BOOL	out	Tolerance alarm WP-B
MX 25	BOOL	out	Flow-warning WP-B
MX 26	BOOL	out	Held WP-B
MX 33	BOOL	out	1/4 d WP-A
MX 34	BOOL	out	WP-A standstill
MX 35	BOOL	out	WP-A is tared
MX 36	BOOL	out	WP-A coarse flow
MX 37	BOOL	out	WP-A fine flow
MX 38	BOOL	out	WP-A discharge
MX 39	BOOL	out	WP-A is filled during simulation
MX 40	BOOL	out	Data for WP-B are valid

MX 41	BOOL	out	1/4 d WP-B
MX 42	BOOL	out	WP-B standstill
MX 43	BOOL	out	WP-B is tared
MX 44	BOOL	out	WP-B coarse flow
MX 45	BOOL	out	WP-B fine flow
MX 46	BOOL	out	WP-B discharge
MX 47	BOOL	out	WP-B is filled during simulation
MW 3	WORD	out	Analog output, no function without interface
MW 4	WORD	in	Analog input 1, no function without interface
MW 5	WORD	in	Analog input 2, no function without interface
MW 6	WORD	in	Analog input 3, no function without interface
MW 7	WORD	in	Analog input 4, no function without interface
MX 128 255		in	Addressed by SPMIn and SPMOut, defined in ProBatch+ and I/O
		and	configuration.
		out	For components and control signals for use with local I/O.
MX 256 319		out	Adressed by SPMIn and SPMOut, is copied to the fieldbus (weighing
			point A, if any), defined in ProBatch+ and IO configuration.
			For components and control signals, which are switched on the PLC (e.g.
			Siemens S7).
MX 320 383		in	Adressed by SPMIn and SPMOut, is copied by the fieldbus (weighing
			point A, it any), defined in Probatch+ and IO configuration.
			or local IO
MX 384 447		out	Addressed by SPMIn and SPMOut, is copied to the fieldbus (weighing
W/X 301 117		out	point B, if any), defined in ProBatch+ and IO configuration.
			For components and control signals, which are switched on the PLC (e.g.
			Siemens S7).
MX 448 511		in	Addressed by SPMIn and SPMOut, is copied by the fieldbus (weighing
			point B, if any), defined in ProBatch+ and IO configuration.
			Signals from the PLC (e.g. Siemens S7), which are required for the phase
			or local IU.
MIX 512 527		out	MX 512 🖓 MX 128 AND Coarse WP-A
			 MX 527 ⇔ MX 143 AND Grobstrom WP-A
MX 528 543		out	MX 528 \Leftarrow MX 128 AND Feinstrom WP-A
1117 020 010		041	
			MX 543 🗢 MX 143 AND Feinstrom WP-A
MX 544 559		out	MX 544 🗢 MX 144 AND Grobstrom WP-B
			MX 559 ← MX 159 AND Grobstrom WP-B
MX 560 575		out	MX 560 🖙 MX 144 AND Feinstrom WP-B
			 MY EZE - MY 1EO AND Exinctrom M/D D
	1	1	I INIY 212 🗠 INIY 123 UND LEIURTIOUI MA-R

							%	их				
%ML	%MD	%MW	%МВ	•		•	•		-	•	-	
				U	1	2	3	4	5	6		
				\$80	\$40	\$20	\$10	\$08	\$04	\$02	\$01	
0	0	0	0	0	1	2	3	4	5	6	7	System
		1	1	16	9 17	10	11	12	13	14 22	15 23	System, Limits
		'	2	24	25	26	27	20	29	30	23 31	Status WP-B
	1	2	4	32	33	34	35	36	37	38	39	Status WP-A
			5	40	41	42	43	44	45	46	47	Status WP-B
		3	6	48	49	50	51	52	53	54	55	anaout
4	0	4	7	56	57	58	59	60	61	62	63	in d
1	2	4	8	64 72	65 73	66 74	67 75	68 76	69 77	70 78	71 70	anain1
		5	10	80	81	82	83	84	85	86	87	anain2
			11	88	89	90	91	92	93	94	95	
	3	6	12	96	97	98	99	100	101	102	103	anain3
		-	13	104	105	106	107	108	109	110	111	
		1	14	112	113	114	115	176	117	118	119	anain4
2	4	8	16	128	129	130	131	132	133	134	135	SPMout prepared
			17	136	137	138	139	140	141	142	143	for WP-A
		9	18	144	145	146	147	148	149	150	151	SPMout prepared
	F	10	19	152	153	154	155	156	157	158	159	for WP-B
	5	10	20 21	160	161	162	163	164	105	100	107	SPMIN / SPMOUT
		11	22	176	177	178	179	180	181	182	183	
			23	184	185	186	187	188	189	190	191	
3	6	12	24	192	193	194	195	196	197	198	199	
			25	200	201	202	203	204	205	206	207	
		13	26 27	208	209	210	211	212	213	214	215	
	7	14	28	224	225	226	215	228	229	230	223	
			29	232	233	234	235	236	237	238	239	
		15	30	240	241	242	243	244	245	246	247	
			31	248	249	250	251	252	253	254	255	
4	8	16	32	256	257	258	259	260	261	262	263	SPMin / SPMout
		17	33 34	204	200	200	207	200	209	270	271	
		••	35	280	281	282	283	284	285	286	287	
	9	18	36	288	289	290	291	292	293	294	295	
			37	296	297	298	299	300	301	302	303	
		19	38	304	305	306	307	308	309	310	311	
5	10	20	40	320	321	322	323	324	325	326	319	SPMin / SPMout
Ū		20	41	328	329	330	331	332	333	334	335	Fieldbus write
		21	42	336	337	338	339	340	341	342	343	WP-A
			43	344	345	346	347	348	349	350	351	
	11	22	44 45	352	353	354	355	356	357	358	359	
		23	40 46	368	369	370	371	372	373	374	375	
			47	376	377	378	379	380	381	382	383	
6	12	24	48	384	385	386	387	388	389	390	391	SPMin / SPMout
			49	392	393	394	395	396	397	398	399	Fieldbus read
		25	50 51	400	401 400	402	403	404	405	406	407	WP-B
	13	26	52	416	417	418	419	420	421	422	423	
			53	424	425	426	427	428	429	430	431	
		27	54	432	433	434	435	436	437	438	439	
_			55	440	441	442	443	444	445	446	447	
1	14	28	56 57	448	449	450	451	452	453	454	455	SPMin / SPMout
		29	58	464	465	466	467	468	469	470	471	WP-B
			59	472	473	474	475	476	477	478	479	
	15	30	60	480	481	482	483	484	485	486	487	
		24	61	488	489	490	491	492	493	494	495	
		31	62 63	496 504	497 505	498 506	499 507	500	501	502	503	
8	16	32	64	512	513	514	515	516	517	518	519	Word 8 AND coarse
			65	520	521	522	523	524	525	526	527	of WP-A
		33	66	528	529	530	531	532	533	534	535	Word 8 AND fine
	47		67	536	537	538	539	540	541	542	543	of WP-A
	17	34	60	544 552	545 553	546 554	547 555	548 556	549 557	550 558	551 550	of WP-B
		35	70	560	561	562	563	564	565	566	567	Word 9 AND fine
			71	568	569	570	571	572	573	574	575	of WP-B

7 INTERFACE

This chapter contains detailed information for the installation and for development of a proxy. See also the manual 'Proxy Server'.

Each PhaseController is responsible for the batch process with one or two weighing points. The PhaseController interface structure is 320 bytes for each weighing point.

This structures are accessible for the PR1792 OPC server.

Frequently, the incoming and outgoing signals are also taken via a PLC. In this case, the PC communicates via the PLC and is not connected with the PhaseController. For connecting PC and PLC, a specific OPC server is installed for the PLC. OPC server, protocol and interface hardware are dependent on the PLC. For data transfer from the PLC to the PhaseController and vice versa, a proxy program is required. The proxy must transfer the data via fieldbus through a limited window.

The PLC can detect and modify all incoming and outgoing signals. The PLC application program connects the process data (e.g. enable, coarse, fine, discharge, material,...) with the PhaseController. Additional cables between PhaseController and PLC for process signals are not required.

7.1 OPC interface

The PC interface communicates with the PhaseController via a serial line or via Ethernet. When selecting the Ethernet, a fieldbus for the PhaseController is not available. PC access to the PhaseController by a PLC is either direct or via fieldbus. The interface data description is identical for PC, PLC and PhaseController.

OPC server

The T_OPC structure provides all required variables which are required for control of the PhaseController. The PR1792 OPC server is used for communication via a serial line or Ethernet and has direct access to the interface structure.

Modbus / TCP

A PR 5510/14 interface card is required for using the Modbus/TCP. This interface could be used with Ethernet from the PC or from the PLC. Writing is done in word address 1024, reading is from word address 0. None of the two addresses is in the PhaseController SPM! Instead, the PhaseController uses the multiplex IO area on socket 4. Although the Ethernet is used, configuration and use are similar to the fieldbus interface!

7.2 Fieldbus interface

The interface can be used with various fieldbus systems. The fieldbus interface requires 20 or 32 bytes for each weighing point. With an interface width of 20 bytes, only one weighing point is possible. The width can be configured in the X4, X5 and X6 'setup'. By means of the interface, the PLC can write and read the configured number of bytes. The size of a complete interface parameter set is 320 bytes. Therefore, the fieldbus window must be used in a multiplex mode. The fieldbus program in the PhaseController distributes the incoming and outgoing information from/to the T_OPC interface structure.

Important:

Fieldbus parameter 'Scale-interface' in the PhaseController must be set to 'disabled'. The data width has to be set to 20 or 32 bytes.

For further details related to the data exchange – see chapter 8.2.

Profibus:

A 32 byte interface is used for ProfiBus . Per weighing point, 32 bytes for the input and 32 bytes for the output are available. Optionally, a 20-byte interface can be used. However, using a 20-byte interface is much more time-consuming than the use of the 32-byte interface. For using two weighing points, the 32-byte interface is required.

Interbus-S:

For the Interbus-S, a 20-byte interface is used. Only one weighing point per instrument can be used (restriction due to hardware). 20 bytes for the input and 20 bytes for the output are used.

7.2.1 20-byte FB interface

Normally, this interface is used with Interbus-S installations. The PhaseController definition is used.

Messages and answers:

<Name>< [data format] >< comment>

The gray areas are the same for all telegrams.

The contens of the parameter "iReqCode" is in the example "iReqCode [USINT] message 00" equal to 00 or 00 + 1 = 01.

iReqCode iCommand	[USINT] [SINT]	message 00 phase status command

iReqCode iCommand	[USINT] [SINT]	message 02 phase status command
iSPM	[LWORD]	part of virtual SPM

iReqCode	[USINT]	message 04
iCommand	[SINT]	phase status command

oAnsCode	[USINT]	answer 00
oStatus	[SINT]	actual phase status
oWPFlags	[BYTE]	WP status
oPhaseFlags	[BYTE]	phase status
oGross	[REAL]	gross weight
oActual	[REAL]	actual result
oWPError	[USINT]	WP error, like on display
oPhaseError	[USINT]	last error code
oMsgActive	[BYTE]	message transfer S7

aAncCada	[ΠΟΙΝΙΤ]	anguar 02
OANSCOUE		answer uz
oStatus	[SINT]	actual phase status
oWPFlags	[BYTE]	WP status
oPhaseFlags	[BYTE]	phase status
oGross	[REAL]	gross weight
oSPM	[LWORD]	part of virtual SPM

oAnsCode	[USINT]	answer 04
oStatus	[SINT]	actual phase status
oWPFlags	[BYTE]	WP status
oPhaseFlags	[BYTE]	phase status
oGross	[REAL]	gross weight
oFSD	[REAL]	FSD weight
oUnit	[SINT]	WP dimension t, g, kg,
oExpo	[SINT]	WP decimals
oStep	[SINT]	WP step width8
oLicense	[BYTE]	WP license information

iReqCode	[USINT]	message 06
iCommand	[SINT]	phase status command
offset	[USINT]	offsetiniRecipeID
Filler	[BYTE]	due to S7 string format
iRecipeID	[STR15]	name of the recipe for visualization

iReqCode iCommand	[USINT] [SINT]	message 08 phase status command
iRecipeLine	[UINT]	line in the recipe for
		visualization
iSPMin	[INT]	SPM address of enable bit
iSPMout	[INT]	SPM address of 'component'
iRstMode	[UINT]	restart of dosing
iNegTol	[REAL]	negative tolerance limit
iPosTol	[REAL]	positive tolerance limit
iPLineID	[SINT]	production line ID

oAnsCode	[USINT]	answer 06
oStatus	[SINT]	actual phase status
oWPFlags	[BYTE]	WP status
oPhaseFlags	[BYTE]	phase status
oGross	[REAL]	gross weight

oAnsCode	[USINT]	answer 08
oStatus	[SINT]	actual phase status
oWPFlags	[BYTE]	WP status
oPhaseFlags	[BYTE]	phase status
oGross	[REAL]	gross weight

PHASE Controller Operating Manual

iReqCode[USINT]message 10iCommand[SINT]phase status commandoffset[USINT]offset in iMatIDFiller[USINT]due to S7 string formatiMatID[STR15]name of the materialvisualization

iReqCode	[USINT]	message 12
ICommand	[SIN1]	phase status command
offset	[USINT]	offset in iBatchMode
Filler	[USINT]	due to S7 string format
iBatchMode	[STR15]	mode of dosing

iReqCode	[USINT]	message 14
iCommand	[SINT]	phase status command
iCalTime iPreset	[UINT] [REAL]	calming time preset coarse to fine switching
iOvershoot	[REAL]	overshoot fine stream
iFlowRate	[REAL]	warning limit for flow
iSetpoint	[REAL]	target

iReqCode iCommand	[USINT] [SINT]	message 16 phase status command
iMinScale iMaxScale	[REAL] [REAL]	scaling factor for analog I/O scaling factor for analog I/O

iReqCode	[USINT]	message 18
iCommand	[SINT]	phase status command
offset Filler iTextLen iTextpar	[USINT] [USINT] [USINT] [STR14]	offset in iTextpar due to S7 string format total length of iTextpar extra optional text parameters

iReqCode	[USINT]	message 20
iCommand	[SINT]	phase status command

oAnsCode	[USINT]	answer 10
oStatus	[SINT]	actual phase status
oWPFlags	[BYTE]	WP status
oPhaseFlags	[BYTE]	phase status
oGross	[REAL]	gross weight
oAnsCode	[USINT]	answer 12
oStatus	[SINT]	actual phase status
oWPFlags	[BYTE]	WP status
oPhaseFlags	[BYTE]	phase status
oGross	[REAL]	gross weight

oAnsCode	[USINT]	answer 14
oStatus	[SINT]	actual phase status
oWPFlags	[BYTE]	WP status
oPhaseFlags	[BYTE]	phase status
oGross	[REAL]	gross weight

oAnsCode oStatus oWPFlags oPhaseElags	[USINT] [SINT] [BYTE] [BYTE]	answer 16 actual phase status WP status phase status
oWPFlags	[BYTE]	WP status
oPhaseFlags	[BYTE]	phase status
oGross	[REAL]	gross weight

oAnsCode	[USINT]	answer 18
oStatus	[SINT]	actual phase status
oWPFlags	[BYTE]	WP status
oPhaseFlags	[BYTE]	phase status
oGross	[REAL]	gross weight
		<u> </u>

	oAnsCode oStatus oWPFlags oPhaseFlags oGross	[USINT] [SINT] [BYTE] [BYTE] [REAL]	answer 20 actual phase status WP status phase status gross weight
Ī	oSetpoint oActual	[REAL] [REAL]	actual result / report
	oOvershoot	[REAL]	new overshoot as report

Interface

Interface

iReqCode iCommand

offset

iReqCode iCommand	[USINT] [SINT]	message 22 phase status command

message 24 phase status command

offset in bMessage

[USINT] [SINT]

[USINT]

oAnsCode	[USINT]	answer 22
oStatus	[SINT]	actual phase status
oWPFlags	[BYTE]	WP status
oPhaseFlags	[BYTE]	phase status
oGross	[REAL]	gross weight
oFlowRate	[REAL]	actual flow rate
oSig	[DINT]	scale signature
oPhaseError	[USINT]	last error code
oWPError	[USINT]	last error code
oTextStatus	[BYTE]	status of message tex
		transfer
oAnsCode	[USINT]	answer 24
oStatus	[SINT]	actual phase status
oWPFlags	[BYTE]	WP status
oPhaseFlags	[BYTE]	phase status
oGross	[REAL]	gross weight
Filler	[BYTE]	S/-string format
Length	[SINT]	total length of oTextPar
oTextLen	[USINT]	due to S7 string format
oTextPar	[STR8]	option report parameter
oAnsCode	[USINT]	answer 26
oStatus	[SINT]	actual phase status
oWPFlags	[BYTE]	WP status
oPhaseFlags	[BYTF]	phase status

[REAL]

oGross

iReqCode	[USINT]	message 26
iCommand	[SINT]	phase status command
offcet		offcat in hMaccage
onset		onset in owessage
iMsgStatus	[BOOL]	TRUE if last transmission of
		bMessage
Filler	[USINT]	due to S7 string format
iMessage	[STR14]	portion of bMessage

iReqCode iCommand	[USINT] [SINT]	message 28 phase status command
offset iMsgStatus	[USINT] [BOOL]	offset in bMessage status of message text transfer

oAnsCode	[USINT]	answer 28
oStatus	[SINT]	actual phase status
oWPFlags	[BYTE]	WP status
oPhaseFlags	[BYTE]	phase status
oGross	[REAL]	gross weight
Filler	[USINT]	due to S7 string format
Length	[SINT]	total length of oMessage
oMsgLen	[USINT]	due to S7 string format
oMessage	[STR8]	portion of bMessage

. gross weight

7.2.2 32-byte FB interface

The PhaseController definition is used. See IO layout.

For serial Modbus communication: All incoming messages are stored in the same memory. Analogously, one memory is used for the output messages. The basic address is %MB 480 for the input (T_FBIN) and %MB 544 for the output (T_FBOUT).

Messages and answers:

<Name>< [data format] >< comment>

The gray areas are the same for all telegrams.

The contens of the parameter "iReqCode" is in the example "iReqCode [USINT] message 00" equal to 00 or 00 + 1 = 01.

iReqCode	[USINT]	message 00
iCommand	[SINT]	phase status command
iSPM	[LWORD]	part of virtual SPM

iReqCode iCommand	[USINT] [SINT]	message 02 phase status command

oAnsCode oStatus oWPFlags oPhaseFlags	[USINT] [SINT] [BYTE] [BYTE]	answer 00 actual phase status WP status phase status
oGross	[KEAL]	gross weight
oWPError	[USINT]	WP error, like on display
oPhaseError	[USINT]	last error code
oSPM	[LWORD]	part of virtual SPM
oMsgActive	[BYTE]	message transfer S7

oAnsCode	[USINT]	answer 02
oStatus	[SINT]	actual phase status
oWPFlags	[BYTE]	WP status
oPhaseFlags	[BYTE]	phase status
oGross	[REAL]	gross weight
oFSD	[REAL]	FSD weight
oUnit	[SINT]	WP dimension t, g, kg,
oExpo	[SINT]	WP decimals
oStep	[SINT]	WP step width
oLicense	[BYTE]	WP license information

iReqCode iCommand	[USINT] [SINT]	message 04 phase status command
Filler	[BYTE]	due to S7 string format
iRecipeID	[STR20]	name of the recipe for
·		visualization
iRecipeLine	[UINT]	line in the recipe for
		visualization
iSPMin	[INT]	SPM address of enable bit
iSPMout	[INT]	SPM address of 'component'
iRstMode	[UINT]	restart of dosing

iReqCode iCommand	[USINT] [SINT]	message 06 phase status command
Filler	[USINT]	due to S7 string format
iMatID	[STR20]	name of the material
		visualization
iSetpoint	[REAL]	target
iPLineID	[SINT]	production line ID

oAnsCode	[USINT]	answer 04
oStatus	[SINT]	actual phase status
oWPFlags	[BYTE]	WP status
oPhaseFlags	[BYTE]	phase status
oGross	[REAL]	gross weight

oAnsCode	[USINT]	answer 06
oStatus	[SINT]	actual phase status
oWPFlags	[BYTE]	WP status
oPhaseFlags	[BYTE]	phase status
oGross	[REAL]	gross weight

Interface

iReqCode iCommand	[USINT] [SINT]	message 08 phase status command
Filler	[USINT]	due to S7 string format
iBatchMode	[STR20]	mode of dosing
iNegTol	[REAL]	negative tolerance limit
iPosTol	[REAL]	positive tolerance limit

iReqCode iCommand	[USINT] [SINT]	message 10 phase status command
iCalTime	[UINT]	calming time
iPreset	[REAL]	preset coarse to fine
		switching
i0vershoot	[REAL]	overshoot fine stream
iFlowRate	[REAL]	warning limit for flow
iMinScale	[REAL]	scaling factor for analog I/O
iMaxScale	[REAL]	scaling factor for analog I/O

iReqCode iCommand	[USINT] [SINT]	message 12 phase status command
offset	[USINT]	offset in bTextPar
Filler	[USINT]	due to S7 string format
iTextLen	[USINT]	total length of bTextPar
iTextpar	[STR26]	portion of bTextPar

iReqCode iCommand	[USINT] [SINT]	message 14 phase status command

iReqCode iCommand	[USINT] [SINT]	message 16 phase status command
offset	[USINT]	offset in bTextPar

oAnsCode	[USINT]	answer 08
oStatus	[SINT]	actual phase status
oWPFlags	[BYTE]	WP status
oPhaseFlags	[BYTE]	phase status
oGross	[REAL]	gross weight

oAnsCode	[USINT]	answer 12
oStatus	[SINT]	actual phase status
oWPFlags	[BYTE]	WP status
oPhaseFlags	[BYTE]	phase status
oGross	[REAL]	gross weight

oAnsCode	[USINT]	answer 14			
oStatus	[SINT]	actual phase status			
oWPFlags	[BYTE]	WP status			
oPhaseFlags	[BYTE]	phase status			
oGross	[REAL]	gross weight			
oSetpoint	[REAL]				
oActual	[REAL]	actual result / report			
oOvershoot	[REAL]	new overshoot as report			
oFlowRate	[REAL]	actual flow rate			
oSig	[DINT]	scale signature			
oPhaseError	[USINT]	last error code			
oWPError	[USINT]	last error code			
oTextStatus	[BYTE]	status of message text			
		transfer			

oAnsCode oStatus oWPFlags oPhaseFlags	[USINT] [SINT] [BYTE] [BYTE]	answer 16 actual phase status WP status phase status
oGross	[REAL]	gross weight
Filler	[BYTE]	S/-string format
Length	[SINT]	total length of bTextPar
oTextLen	[USINT]	due to S7 string format
oTextPar	[STR20]	option report parameter

iReqCode iCommand	[USINT] [SINT]	message 18 phase status command
offset	[USINT]	offset in bMessage
iMsgStatus	[BOOL]	TRUE if last transmission of
-		bMessage
Filler	[BYTE]	due to S7 string format
iMessage	[STR26]	portion of bMessage
iBeaCode	[USINT]	message 20

iCommand	[SINT]	phase status command
offset iMsgStatus	[USINT] [BOOL]	offset in bMessage status of message text transfer

oAnsCode oStatus oWPFlags oPhaseFlags oGross	[USINT] [SINT] [BYTE] [BYTE] [REAL]	answer 18 actual phase status WP status phase status gross weight
oAnsCode	[USINT]	answer 20
oStatus	[SINT]	actual phase status
oWPFlags	[BYTE]	WP status
oPhaseFlags	[BYTE]	phase status
oGross	[REAL]	gross weight
Filler	[BYTE]	due to S7 string format
Length	[SINT]	total length of bMessage
oMsgLen	[USINT]	due to S7 string format
oMessage	[STR20]	portion of bMessage

7.3 Serial interface

A serial interface cannot be used with a fieldbus. Unless a fieldbus is connected, the addresses starting with %MB480 can be used to control the PhaseController as with the fieldbus. For detailed information, see Fieldbus interface and Memory and IO layout.

Modbus and DUST3964:

The ModBus has direct access to the specified SPM areas (starting with %MB 480). The fieldbus interface control logic is used. In addition to the interface provided for the fieldbus, the SPM output area, starting with %MB 432, can be used directly. %MB 432 is byte 32 (= bit 256) in the virtual SPM (see 'Virtual SPM').

7.4 Memory and I/O layout

Origin is structure T_OPC, as used by the OPC server. The contents and data types of this structure must be used fo all interfaces to the PhaseController. The format (structure or individual variable) is not decisive. In the PhaseController, the interface is on a fixed SPM address. For connection via fieldbus, a transfer program – the proxy – is required. The PhaseController is provided with a special fieldbus interface with a limited width of 20 or 32 bytes- see chapter I/O. Additionally, a copy is stored on a fixed SPM address.

7.4.1 Memory

The T_OPC basic address in the PhaseController is MB 1024. Each weighing point uses 320 bytes. As the variables are not sorted, every item must be transferred separately. The proxy uses the same interface definition. Basic address and type of addressing are dependent on PLC type. Alike, the data storage mode (as a structure, as a set of single local variables or as global variables) is dependent on the PLC characteristics and the relevant OPC server.

With %MB 400, a 64-byte 'virtual SPM' IO area for the process interface is used for data exchange with the process or the PLC. This area is addressed by ProBatch+ and by the PhaseController configuration.

%MD 89 (MB 356...359) is reserved for the counter of user-defined weighing points(for projects and test).

The fieldbus interface writes up to 15 different telegrams. The variable storage method is dependent on the PLC characteristics. For the PhaseController, it is as follows:

Every message is defined as a type T_FBIN and T_FBOUT structure (see fieldbus interface). All incoming messages are stored in the same memory. The outgoing messages are also stored in one memory.

Input and output area form an array, which comprises the interface for the various weighing points. The basic address is %MB 480 for the input (T_FBIN) and %MB 544 for the output (T_FBOUT). For several ProBatch+ recipe management functions, remote control is possible. Remote control is via a memory part which is not part of this T_OPC interface structure. This buffer is available per device rather than per weighing point. Character string bMessage of up to 220 characters starts at MB 128 in the SPM. This buffer is controlled via T_OPC.

7.4.2 I/O

The 20 or 32 fieldbus interface bytes are copied from/into the SPM working area starting with MB480. Dependent on requested function code (iReqCode), the FB_PLC task in the PhaseController copies from and into the original interface T_OPC structure. The message layout consists of a fixed and a variable part. All incoming messages have a fixed header of 2 bytes:

1. request code in 'iReqCode' and

2. the command to the 'PhaseController' in 'iCommand'.

The content of the remaining bytes is dependent on iReqCode. All outgoing messages have a fixed 8-byte header:

- 1. answer code in 'oAnsCode',
- 2. phase status in 'oStatus',
- 3. weighing point status in 'oWPFlags',
- 4. status flags of the presently running phase in 'oPhaseFlags' and
- 5. the actual gross weight in 'oGross'.

The content of the remaining bytes is dependent on the answer code in 'oAnsCode'. The PhaseController automatically uses the configured fieldbus interface card width. For every incoming message, a defined counterpart for the output exists.

See also chapter 'Fieldbus interface'.

8 PROXY (SELF PROGRAMMER)

8.1 Phase

The proxy follows the basic state diagram of the phases (see chapter Phases). The proxy analyses the incoming commands and the current phase status:

- 1. Idle state: Before giving the START command to the PhaseController, all parameters required for a phase must have been sent to the PhaseController.
- 2. During operation, sending the phase status to the PC and the PC commands to the PhaseController is required.
- 3. Before sending states STOPPED and COMPLETED to the PC, all protocol data must have been sent to the PC.
- 4. Subsequently, the RESET command is given. Proxy and phase are idle again.

The following table identifies the commands (in iReqCode):

	20-byte width	32-byte width
Initialization, after start:	4	2
In IDLE, before the START command is sent	6, 8, 10, 12, 14, 16, 18	4, 6, 8, 10, 12
to the PhaseController:		
When the phase is running or in idle state:	0, (2)	0
Before STOPPED or COMPLETED state	20, 22, 24	14, 16
signalling to the PC:		
Spontaneous messages:	26, 28	18, 20

(2) only when the PLC application uses the optional SPM transfer.

Each PLC requires an appropriate OPC server. As the characteristics of the various PLCs are different, an individual solution for every proxy must be found.

8.2 Data exchange

8.2.1 General

This chapter describes the data exchange between **PLC and PhaseController**. The 20 or 32-byte interface is used. For handling up to 15 different messages, a proxy is required for the PLC. The general data exchange is written in 'data'. Information for special handling of character strings is given in 'String'. The recipe management offers the possibility of remote control.

8.2.2 Data

The data exchange is controlled via the PLC fieldbus master. Control variables are iReqCode and oAnsCode. For multiple transmission, every message has 2 codes: n and n+1. As the data on the fieldbus are transmitted cyclically, code iReqCode must be changed, in order to be detected as a new request. The PLC must e.g. send n and n+1 alternately to handle the same function successively several times. When the PhaseController receives the same iReqCode, it will be ignored. The PhaseController reflects the iReqCode in oAnsCode. A detailed description of the method is given using an application example (for telegram content, see Fieldbus interface):

	Fieldbus / PLC	PhaseController
1	The PLC prepares a data set, which is sent to the PhaseController and changes iReqCode, if necessary.	
2	The PLC sends the data set to the PhaseController via the field bus.	The message is copied into the memory by the IO of the fieldbus interface card. The PhaseController detects a changed iReqCode.
3		Dependent on iReqCode, the content is transferred to the common interface structure T_OPC. Dependent on iReqCode, data are copied from the common interface T_OPC to the fieldbus interface.
4		iReqCode is copied into the oAnsCode. The message is copied into the fieldbus interface card IO.
5	The PLC detects the reflected answer in oAnsCode and handles the received data according to oAnsCode.	
6	Continue with step 1	

Example for data exchange (20-byte interface):

PLC	iReqCode	2		3		0		4		0		2		0		
PhaseController	oAnsCode		2		3		0		4		0		2		0	

Messages which contain long characrter strings require special handling. Due to the limited number of bytes on the fieldbus, long character strings must be transmitted in several parts. In the case of the 20-byte interface, all character strings can be too long for a single message. With the 32-byte interface, the optional text parameter bTextPar and the optional message bMessage can be too long.

The PhaseController can handle a message in a PLC cycle at intervals of 50ms.

8.2.3 String

These messages must be divided into several parts, for transmission of long character strings:

	20 bytes wide	32 bytes wide
Telegram to PhaseController	6, 10, 12, 18	12
Telegram from PhaseController	24, 28	16, 20

Example:

The recipe name may be up to 20 characters long. With a 20-byte interface, only up to 15 characters of the recipe name in message number 6 can be transmitted. With a 32-byte wide interface, all 20 characters in message 4 can be transmitted.

8.2.3.1 String from PLC to PhaseController

The messages with potentially too long character strings contain variable 'offset' for decision, which part of the character string is sent.

	Fieldbus / PLC	PhaseController
1	The first message is sent with an offset = 0. The length of the transmitted character string is correct for the first part.	The PhaseController clears the corresponding character string and writes the received part into the variable.
2		The PhaseController copies iReqCode into oAnsCode and returns the defined answer telegram.
3	If the character string is already complete with this first message, transmission is completed, otherwise, the next part is sent (4).	
4	If transmission still isn't complete, the next part of the character string is sent. The offset is not decisive, but must be <> 0. The length of the transmitted character string is correct.	The PhaseController appends this part to the already received character string. The PhaseController returns the defined answer telegram.
5	If the character string is now complete, no further transmission will follow, otherwise, the next part is transmitted (4).	

As the character string is built up by appending, the format is always correct. In order to finish the transmission of a character string, a completion message is not required. The master simply stops the transmission, however, the parts must be sent in ascending order. Incoming character strings are not used before starting a phase. Consequently, the PLC must take care that the character string is complete, before giving the start command.

8.2.3.2 String from PhaseController to PLC

Output of character strings from the PhaseController is similar. Transmission is controlled by the master.

	Fieldbus / PLC	PhaseController
1	The first message is sent with offset = 0.	The PhaseController writes the overall length of the requested character string into the answer telegram (length). Additionally, the first part of the character string is copied.
2		The PhaseController copies iReqCode into oAnsCode and returns the specified answer telegram.
3	If the character string with this first message is already complete (actual length = length), no further transmission will follow, otherwise, the second part is recalled. (4).	
4	If the character string still isn't complete, the next part of the character string is requested and an offset > 0 is sent. The offset corresponds to the position of the next character which has to be sent.	The PhaseController writes the overall length of the requested character string into the answer telegram (length). The PhaseController writes a sub-string with the maximum possible number of characters – starting at the offset – into the answer telegram. If the remaining length is below the available space, the rest of the string is sent.
		The PhaseController copies the iReqCode into oAnsCode and returns the defined answer telegram.
5	The received character string is appended to the previously received character string. If the length of the stored character string corresponds with this length, no further transmission will follow, otherwise, the next part is requested. (4).	

As the character string is built up by appending, the format is correct at any time. No completion message is required to finish transmission of a character string. Outgoing character strings are used only, after the phase has reached the STOPPED status or the COMPLETED status, i.e. the PLC must only take care that the character string is complete, before sending the RESET command. RESET deletes the character string.

8.2.4 Remote control

Character string bMessage can be used for limited remote control of the PC (ProBatch+). As these messages are synchronous to all phases, handling is slightly different from the transmission of other character strings. In this case, the initiative is taken by the PhaseController.

The request code iReqCode in the following table are identical to those of the 32-bit model. The variables, e.g. oWPFlags, are part of the common PLC and PC IO (dependent on PLC characteristics, T_OPC is of equal or similar type). bMessage is a local buffer of up to 220 characters. The data block number in S7 installations is written into dMessage in T_OPC. This value is not used by the PhaseController.

Time nesting of these messages is not possible.

PhaseController	PLC	PC
Unless message transmission occurs: write message into local	PLC discovers request for message transmission by	
buffer bMessage, set oMsgStatus	PhaseController in oWPFlags.	
:= TRUE, message available in	This flag still isn't transmitted to	
OWPFlags := IRUE, IMsgStatus :=	the PC at this time. In OPC	
FALSE. OWISGACTIVE OIT 2 := TRUE	Structure: INISGStatus := FALSE.	PC discovers that a massage is
	number of characters in cmd20	available in oWPElags – TRUE
	Length (iRegCode := $20/21$.	reads the local bMessage. The PC
	starting with $cmd20.0ffset := 0$).	resets oMsqStatus.
	After reading all characters in	5
	several cycles, if necessary, the	
	signal that a message is available	
	is transmitted to the PC in	
	oWPFlags := IRUE .	
		PC proceeds according to
		instruction in owessage (e.g.
		answer into hMessage The PC
		sets iMsgStatus := TRUF.
	The PLC discovers iMsgStatus =	
	TRUE and sends all characters	
	from bMessage to the	
	PhaseController (iReqCode := 18	
	/ 19, starting with cmd18.0ffset	
	:= 0). During the last substring	
	transfer, cmd18.iMsgStatus	
The DhaseController weits for	becomes = IRUE.	
amd 18 iMsaStatus - TRUF		
hMessage is now valid and is		
handled, oMsgStatus := FALSF.		
the PhaseController sets signal		
'message available' in oWPFlags		
:= FALSE, oMsgActive bit 2 :=		
FALSE		

The transfer time is monitored (timeout approx. 15 s).

8.3 Debug

With a terminal a debug-programm may be called, to debug status and variables. Setup -> Serial Ports -> Operator device at Chosse in the main menue 'L' for 'Comand Line'. The debugger may be called with 'DBG'.

Version =	01.09.00	FSD =	10.000 kg
WP =	A	Gross =	0.773
Command = Status = BatchMode = PLine ID = Recipe ID = Setpoint = Preset = Flowrate = PosTolerance = MinScale = SPM in = WPError = PhaseError = License = TextPar = Message =	- 1 4 2 6 7 1 4 4 13 - 13 1 3 6 0 13 13 1 D1 1 Manual 1 0 0 0 0 0 0 0 0 0 0 0 0 0	4 7 1 7 1 3 17 0 137 0 13 RestartMode = Material ID = Line = Actual = Overshoot = Calmingtime = NegTolerance = MaxScale = SPM out = WPFlags = PhaseFlags =	6 7 1 6 0 1 0 X5-A-D1 1 0.774 0 0 s 0.02 0 140 \$01 \$20

In the example above a phase is started by the Command '1:START'.

The phase is running: Status '1:RUNNING' and goes after a while into the state '3:HELD'. After that the phase is restarted with the command '4:RESTART'. The newest commands are displaied right in the line. Below, all parameters of the actual phase are displaied: 'BatchMode', 'PLine ID', 'Recipe ID',...

9 Phases

9.1 General

The information given in this section is intended primarily for project-based proxy development or PhaseController handling by the software project engineer. The normal user will find background information.

The phase specification is the result of long years of experience. This collection of control functions can be used to handle the process control functions of most batching applications. The phases were developed as the main part of process control. The phase behaviour follows the rules of S88. The interface is designed for OPC server.

For general information, see Basic state diagram, and Phase types.

The common interface is described in Interface and Interface parameters.

A description of the various phase functions is given in Phase function blocks.

The PhaseController application program uses the FBLib-S88 library batching phases, which is available for building up similar applications. The application code can be used as an example for programming an operator interface for dialogues and visualization and for using the function blocks from the library. The application code is available on request and can be used as a basis for development of new applications.

9.2 Basic state diagram

9.2.1 Survey

Control information (iCommand) and status information (oStatus) are of utmost importance. Each phase follows the basic state diagram:

The arrows show the commands in iCommand, the circles show the phase states. As a state can have sub-states, the state in oStatus is multiplied by ten and the number of sub-state x is added. The result in IState is used for indication of a detailed state. Other state transitions than those which are shown in the diagram are not permissible.

A state in this diagram may have substates, which are used intern.

PHA_012

9.2.2 Commands

The commands for the state transitions:

commandl	Name	Description
11	TEST	Starts a phase for checking the licence validity/availability and the
		parameters. A process is still not started by this command.
1	START	This command starts the phase from the idle state. The command may be
		given only after all parameters were sent to the PhaseController.
2	HOLD	This command halts a running phase.
4	RESTART	This command restarts a phase, which is in HELD state.
6	STOP	This command is given, in order to stop a phase, which is in HELD state.
7	RESET	This command resets the phase to IDLE state. This command may be given
		only after recalling all phase parameters. The batch report is not available
		any more.

Commands 3 and 5 are not used by the phases in the library. After accepting a command, iCommand is reset to 0. Commands which are not listed above, and commands which are not permitted (not included in state diagram) are ignored.

9.2.3 States

oStatus	Name	Description
0	IDLE	The phase is ready for starting, after all required data were written into
		the interface structure.
1	RUNNING	The phase is being handled presently.
3	HELD	The phase is not handled due to a HOLD command or due to internal
		problems (e.g. batching out of tolerance).
6	STOPPED	The phase was stopped due to a STOP command. This kind of termination
		is an exception. The batch report is available, until a RESET command is
		given.
7	FERTIG	The phase was finished regularly. The batch report is available, until a
		RESET command is given.

The basic states are :

Other states are not used by the phase. Due to very fast handling, e.g. 50 ms per transition, a state may be not detected by the control program. A parameter error causes direct phase transition into the HELD state.

9.2.4 Order of phase handling

Phase handling order:

- 1. In IDLE state, all required parameters must be transferred to the interface. The number of parameters is dependent on the phase type, see Interface parameters and Phase function blocks.
- 2. Send the START command. The phase changes from IDLE into RUNNING (or into HELD if an error occurred).
- 3. If the phase is in HELD state, it can be re-activated with the RESTART command, or aborted using the STOP command.
- 4. When the phase reaches state COMPLETED (or STOPPED due to STOP command), read all phaserelated return values. Important outputs are e.g. oActual, bOvershoot and sometimes bTextPar (for this, see also Interface parameters and Phase function blocks.).
- 5. Send RESET. The phase is reset to the IDLE state and waits for the next START command.

9.3 Phase types

The phases in the library (FBlib-S88) are implementations of the well-known firmware functions, now written in IEC 61131 with extended interface. The following batch modes are included:

Туре	Phase name	Function
B1 B6	FDOSING	Filling or discharging in various mode
B8	FDISCHARGE	Discharges the scale completely
D1, D2	FMANUAL	Manual additions
D4_DIALOG	FDIALOG	Operator dialogue
A1, A2	FANALOG	Analog value reading or output
D4	FSTOP	Stops handling until a command is given
D5, D8	FWAITBIT	Waits for a specific bit
D6, D7	FSETRESET	Sets or resets a specific bit
D3	FTIMER	Waits a defined time

9.4 Phase interface

Structure T_OPC was developed to connect a complete process controller, but to a certain extent, also as a local interface for all phases.

	Signification		Example
i	Phase inputs	These variables are only written by the control	iCommand
		program (PC/SPS). There is one exception:	
		iCommand is reset, after the command was	
		detected to avoid handling it twice.	
0	Phase outputs	These variables are output by the phase. The values	oStatus
		can change at any time.	
b	Bi-directional	These variables are used in the two directions. For	bOvershoot
	input / output	parameter setting before phase starting and for	
		protocol sending after phase handling.	
1	Local, not	These variables are used for internal purposes, e.g.	IStatus
	transmitted	for communication between the PhaseController	
		resources. The content can be read by a PC.	
d		Not used in the PhaseController.	dMessage

The first character in a variable name is of special signification in this structure:

The interface structure is used by the following phases and special functions (e.g. visualization):

	FANALOG	FDIALOG	FDISCHARGE	FDOSING	FMANUAL	FSETRES	FSTOP	FTIMER	FWAITBIT
bOvershoot				RW					
bSetpoint	R			R	R			R	
bTextStatus		W		W	W				
bTextpar		RW		R	RW				
iBatchMode	R	R	R	R	R	R	R	R	R
iCalTime			R	R					
iCommand	R (W)	R (W)	R (W)	R (W)	R (W)	R (W)	R (W)	R (W)	R (W)
iFlowRate				R					
iMatID		-		Used	for visuali	zation			
iMaxScale	R								
iMinScale	R								
iMsgStatus			Use	ed for visu	alization	in ProBato	:h+		
iNegTol				R	R				
iPLineID				Used	for visuali	zation			
iPosTol				R	R				
iPreset				R					
iRecipeID				Used	for visuali	zation			
iRecipeLine				Used [·]	for visuali	zation			
iRstMode				R					
iSPMin	RW								
iSPMout	RW								
iSPMinBit		R	R	R	R	R	R	R	R
oSPMoutBit		W	W	W	W			W	W
lCont		RW			RW				
IDirection				W					
IPowerFail	RW	RW	RW	RW	RW	RW	RW	RW	RW
IStatus	W	W	W	W	W	W	W	W	W
oActual	W	W	W	W	W	W	W	W	W
оЕхро			Wei	ghing poir	nt scaling	for ProBat	tch+		
oFSD				5 51	5				
oGross			Use	ed for visu	alization	in ProBato	:h+		
oLicense			Wei	ghing poir	nt scaling	for ProBat	tch+		
oMsgActive			Used for P	LC inform	ation on t	the messad	ge transfe	r	
oMsgStatus			Use	ed for Pro	Batch+ re	mote cont	rol		
oPhaseError	W	W	W	W	W	W	W	W	W
oPhaseFlags	RW	RW	RW	RW	RW	RW	RW	RW	RW
oSig				Not us	ed by the	library			
oStatus	W	W	W	W	Ŵ	Ŵ	W	W	W
oStep			Wei	ahina poir	nt scaling	for ProBat	tch+		
oUnit				5 51	5				
oWPError									
oWPFlags									
		DI	1 (1 1 1)						
R R		Phase rea	ads this ite	em					
W		Phase wr	ites this it	em					
(W)	Phase is set to 0, if accepted; not used by the application								

9.4.1 Code

The code of all phases is called up in a cyclical PLC program. For best batching results, we recommend using each individual conversion of the scale ADC. Only one state transition per call is possible. None of the phases uses WAIT() and will return as quickly as possible, in order to handle the IO statements of the internal PLC.

Optionally, you can use the state in oStatus (or in IState in more detail) for display of the current phase status. Apart from FDIALOG and FANALOG with optional dialogue, no operator interface is required for handling a batch phase.

PHA 013X

9.5 Interface parameters (T_OPC)

In the following table, the 'master' is the control function in a system, the 'phase' is the executive instance, including all software. As structure T_OPC was developed for control of a complete batching device, some items are not used by the FBs in the library (FBlib-S88). The main program can use the complete interface. As data type WEIGHT is not used, the relevant REAL value has unit kg or lb - dependent on the actual configuration.

Convention for names: iXyz = data to PhaseController, oXyz = data from PhaseController, bXyz = for the two directions and IXyz = used locally in the PhaseController.

Variable	Туре	Update	Use
bOvershoot	REAL	Bi-directional: by the master before phase start and updated by	Overshoot in kg or lb. Not changed whilst the phase is running.
		the phase in states STOPPED or COMPLETED.	
bSetpoint	REAL	Bi-directional: by the master	Setpoint in kg, lb, s or without unit –
		before phase start, or in HELD state	dependent on phase type:
		and by the phase before changing	• Setpoint is sent to the phase before
		state.	 read in STOPPED or COMPLETED
			state.
bTextStatus	BOOL	Bi-directional: by master or phase	Used by the master, if text parameters
		in STOPPED or COMPLETED state,	for the phase are available. Used by the
		when text parameters must be	phase, when a parameter is returned in
		master or phase.	orexti al. See also String.
bTextpar	STR160	Bi-directional: by master before	• send by the master before start, the
		phase start and by the phase	format is 'name1=value2
		COMPLETE state	 name2=value2 not relevant whilst the phase is
			running
			• in STOPPED or COMPLETED state, if
			an optional protocol is available.
iBatchMode	STR20	By the master before phase start	Dependent on the phase type. 2
			characters for standard phases. New
			phases must start with a standard
			iBatchMode is used twice: for further
			routing and selecting a function within
			the FB.
iCalTime	UINT	By the master before phase start.	Time in steps of 100 ms:
			• Calming time for batching.
			 still open time after completing a discharge
iCommand	SINT	By the master, restart by the phase	Controls the phase - see basic state
		, , , ,	diagram. The application writes the
			command. iCommand is set to 0, when
	DEAL		the phase has detected the command.
iFlowRate	KEAL	By the master before phase start.	Min. flow rate in kg/min or lb/min.
iMatID	STR20	By the master before phase start	Name of the actual material: only for
imatib	511/20	by the muster before phase start.	visualization.
iMaxScale	REAL	By the master before phase start.	Value of iSetpoint for 0/4 mA on
			analog inputs and outputs.
iMinScale	REAL	By the master before phase start.	Value of iSetpoint for 20 mA on analog
dMessage		Not used by the PhaseController	Inputs and outputs.
umessaye			Information from S7 to PC.
iMsgStatus	BOOL	By the master, restart by the phase.	TRUE when an asynchronous message
-			(answer) was transmitted by the
iNegTol	REAL	By the master before phase start	master.
iPl inelD	SINT	By the master before phase start	Production line number: only for
			visualization.
iPosTol	REAL	By the master before phase start.	Upper tolerance in kg or lb.

iPreset	REAL	By the master before phase start.	Preset point, for switch-over from	
iRecipeID	STR20	By the master before phase start.	Name of the currently running recipe;	
iRecipeLine	UINT	By the master before phase start.	Number of the recipe line, only for	
iBstMode	LIINT	By the master before phase start	Restart mode batching	
iSPMin		By the master before phase start.	Address im SPM. The application	
		by the master before phase start.	program copies the content from this address into iSPMinBit.	
iSPMout	UINT	By the master before phase start.	Address in SPM. The application	
			program copies oSPMoutBit into this address.	
iSPMinBit	BOOL	By the application.	Activates the phase, set and reset by	
			the application. oPhaseFlags contains	
			of copy of this bit.	
oSPMoutBit	BOOL	By the phase.	Signals: 'Phase running' (select	
			component) or used for process control	
			- dependent on the phase type. Set	
			and reset by the phase. oPhaseFlags	
			contains a copy of this bit.	
lCont	BOOL	By the phase.	Used internally for initialization of	
			manual phase restart.	
IDirection	BOOL	By the phase.	Only for weight simulation, is TRUE	
			when filling	
IPowerFail	BOOL	By the application, restart by the	Used internally, to stop the running	
		phase.	phase after power recovery.	
IStatus	BOOL	By the phase.	Detailed state. See state diagram of	
			phase function blocks.	
oActual	REAL	Actual value whilst the phase is	Actual phase value. The unit (kg, lb, s,	
		running. Becomes the report in) is dependent on scale and phase	
		state STOPPED or COMPLETED.	type.	
oBModeLen	USINT	Constant = 20	Max. length of character string	
			iBatchMode	
оЕхро	SINT	By the application program during starting.	Digits behind the decimal point, exactly like WEIGHT_EXPO().	
oFSD	REAL	By the application program during	Full scale value in kg or lb.	
o Groce		Starting.	Grass weight in kg or lh	
		By the employetion pressure during	Gross weight in kg or io.	
olicense	BILE	starting.	See table below.	
oMatLen	USINT	Constant = 20	Max. length of character string iMatID	
oMsgActive	BYTE	By the phase.	Bit 0 is TRUE as long as message	
U U			transfer is going on (only for fieldbus	
			interface).	
oMsgStatus	BOOL	By the phase, restart by the master.	TRUE when an asynchronous message	
-			(answer) must be transmitted.	
oPhaseError	USINT	By the phase.	Updated whilst the phase is running.	
			Codes with a higher number are not	
			overwritten.	
			0: No error	
			1: Flow alarm, also coded in	
			oPhaseFlags	
			2: Tolerance alarm, coded also in	
			oPhaseFlags	
			3: Power failure set by PLC task. At	

			power recovery, the phase must be reset. 4: Phase was aborted. 5: Faulty parameter, aborted. 6: Paging stopped with red 'Stop' key
			7: An inadmissible state transition was
			8: General weighing point error, also coded in oWPFlags: - 'Error X' on the display
			 Scale could not be tared Switch-over to 'Single Conversion' was not possible analog I/O value out of limits State event of a participation
- Desiral on		Constant 20	9: Fatal error, e.g. no licence
okecipeten	USINI	Constant = 20	iRecipelD
oPhaseFlags	BYTE	By the phase.	See table below
oSig	UDINT	By the application program during starting.	Signature from software and hardware parameters to ensure that the instrument was not replaced. The upper word contains a CRC16 on several hardware and software parameters. The lower word contains the same value + 100 * software version.
oStatus	SINT	By the phase.	Actual state - see basic state diagram.
oStep	SINT	By the application program during starting.	Display stepwidth, exactly like WEIGHT_VALUE(WGT_TYPE#STEP).
oTextLen	USINT	Constant = 160	Max. length of character string bTextPar
oUnit	SINT	By the application program during starting.	Weight unit, exactly like ENUM_TO_INT(WGT_UNIT).
oWPError	USINT	By the phase.	Exactly like 'Error x' on the display.
oWPFlags	BYTE	By the phase.	See table below.

Content of error bytes and status bytes:

IEC 61131	"C"	oLicense	oPhaseFlags	oWPFlags
7 (\$01)	0	TRUE = batching PR1713/32	Discharge	Tared
6 (\$02)	1		Fine flow	Scale error
5 (\$04)	2		Coarse flow	Licence PR1713/32 missing
4 (\$08)	3		Flow alarm	
3 (\$10)	4		Tolerance alarm	
2 (\$20)	5		Copy of oSPMOutBit	Content of oMsgStatus bit
1 (\$40)	6		Copy of iSPMInBit	reserved
0 (\$80)	7		TRUE whilst the phase is active	reserved
9.6 Offsets in T_OPC

					Base	1024	1344
Bit	Byte	Length	Туре	Variable	Client	WP-A	WP-B
0	0	1	SINT	iCommand	MB	1024	1344
8	1	1	SINT	oStatus	MB	1025	1345
16	2		BOOL	iMsgStatus	MX	8208	1346
17	2		BOOL	oMsgStatus	MX	8209	10768
18	2		BOOL	bTextStatus	MX	8210	10769
19	2		BOOL	IPowerFail	MX	8211	10770
20	2		BOOL	IDirection	MX	8212	10771
21	2		BOOL	lCont	MX	8213	10772
22	2		BOOL	iSPMinBit	MX	8214	10773
23	2		BOOL	oSPMoutBit	MX	8215	10774
24	3	1	SINT	oUnit	MB	1027	1347
32	4	1	SINT	оЕхро	MB	1028	1348
40	5	1	SINT	oStep	MB	1029	1349
48	6	1	USINT	oPhaseError	MB	1030	1350
56	7	1	USINT	oWPError	MB	1031	1351
64	8	1	BYTE	oWPFlags	MB	1032	1352
72	9	1	BYTE	oPhaseFlags	MB	1033	1353
80	10	2	UINT	iRecipeLine	MW	517	677
96	12	2	INT	iSPMin	MW	518	678
112	14	2	INT	iSPMout	MW	519	679
128	16	2	UINT	iRstMode	MW	520	680
144	18	2	UINT	iCalTime	MW	521	681
160	20	4	DINT	oSig	MD	261	341
192	24	4	REAL	oFSD	MR	262	342
224	28	4	REAL	oGross	MR	263	343
256	32	4	REAL	oActual	MR	264	344
288	36	4	REAL	bSetpoint	MR	265	345
320	40	4	REAL	iPreset	MR	266	346
352	44	4	REAL	bOvershoot	MR	267	347
384	48	4	REAL	iNegTol	MR	268	348
416	52	4	REAL	iPosTol	MR	269	349
448	56	4	REAL	iFlowRate	MR	270	350
480	60	4	REAL	iMinScale	MR	271	351
512	64	4	REAL	iMaxScale	MR	272	352
544	68	1	SINT	lStatus	MB	1092	1412
552	69	1	SINT	iPLineID	MB	1093	1413
560	70	1	USINT	oRecipeLen	MB	1094	1414
568	71	21	STR20	iRecipeID	MB	1095	1415
736	92	1	USINT	oMatLen	MB	1116	1436
744	93	21	STR20	iMatID	MB	1117	1437
912	114	1	USINT	oBModeLen	MB	1138	1458
920	115	21	STR20	iBatchMode	MB	1139	1459
1088	136	1	USINT	oTextLen	MB	1160	1480
1096	137	161	STR160	bTextpar	MB	1161	1481
2384	298	2	UINT	dMessage	MW	661	821
2400	300	1	BYTE	oLicense	MB	1324	1644
2408	301	1	BYTE	oMsgActive	MB	1325	1645
2416	302	18	STR17	lFiller	MB	1326	1646
	Länge	320	Bytes				

9.7 Phase function blocks

The description of the functionblocks is a description of the library FBlib-S88. This could be used for bachground information for the use of the parameter.

9.7.1 Analog on / off

The module is designed for input and output of analog values. Input and output values in the SPM are standardized to 0 ... 20000.

Phase	FANALOG	
Туре	A1, A2	
Parameter	iBatchMode	Direction is defined by A1 (output) or A2 (input).
	iSPMin	Address for input. PLC program must transform the address by
		an array of type WORD for use as VAR_IN_OUT. See also
		Interface parameters.
	iSPMout	Address for output. PLC program must transform the address by
		an array of type WORD for use as VAR_IN_OUT. See also
		Interface parameters.
	bSetpoint	Output value for A1, not used for A2.
	oActual	Returns the standard value of the analog input – for A2, unused
		for A1.
	iMinScale	Setpoint for 0/4 mA
	iMaxScale	Setpoint for 20 mA
	SPMin	Not in T_OPC: direct address for word in SPM, internal PLC
		copies the analog input in scaled form into this address.
	SPMout	Not in T_OPC: direct address for word in SPM, internal PLC
		copies the scaled content of this address into the analog output.
Extended:	The phase goes to HEI	D automatically, when the input value is out of the permissible
	limits -2 mA and 22 n	nA.

Standardization for input and output 0 mA = 0 counts and 20 mA = 20000 counts.

9.7.2 Dialogue

The dialogue phase provides only the state machine to program a dialogue for the operator interface. The dialogue itself must be programmed in the operating program, because access to DEVICE in resource operating is required.

Phase	F DIALOG	
Туре	D4_DIALOG	
Parameter	WP	Weighing point identification ('A', 'B',)
	cmd	Copy of iCommand
	iBatchMode	Phase type is D4_DIALOG.
	iSPMin	Address to activate the dialogue, for more details, see interface
		parameters.
	iSPMout	Address: phase running
	bTextPara	Parameter : dialogue=(type of dialogue), optional dsp1 and dsp2
		(see further down in the table)

The dialogue entry by the user is returned in bTextPar. The returned value is dependent on the dialogue type (see further down in the table).

For using this material in ProBatch+, file PHASECNT.DAT must be copied into the database directory of the PC.

FUNCTION_BLOCK D4_DIALOG

Parameters:

The parameters are written into the text field of this phase in ProBatch+. The three parameters are:

1.	dialog=xy	x > 0: prompt text from
		database, y: dialogue type
2.	dsp1='abc'	Optional: 'abc' is the message in
		the first display line
3.	dsp2='cde'	Optional: 'cde' is the unit for
		numeric entries in line 2

The phase checks parameter 'dialog' (MOD 10 >= 1 AND MOD 10 <= 9 = TRUE). x can be any number and is used to mark a special dialogue from the text database. y is the dialogue type. The text for the unit dsp2 should not be longer than 16 characters. '---' is returned when aborting the phase..

Dialog	Туре	Function	Return
x1	DINT	Enter integer	'OK: <integer>' or ''</integer>
x2	REAL	Enter decimal number	'0K: <real>' or ''</real>
x3	WEIGHT	Enter weight in the format of the actual	OK: <weight>' or ''</weight>
		unit	
x4	STR20	Text max. 20 characters	'0K: <text>' or ''</text>
x5		Softkey dialogue: Ok	'0K'
x6		Softkey dialogue: Ok + abort	'0K' or ''
x7		Softkey dialogue: YES + No	'Yes', 'NO' or ''
x8		Softkey dialogue: YES + abort + No	'Yes', 'NO' or ''
x9		Softkey dialogue: softkeys of dsp2	'KEY1', 'KEY2' or 'KEY3' or ''

This example shows how the temperature from the keyboard is read with a fixed input prompt and unit. Dialogue phase text parameters:

dsp1='temperature:'	
dsp2='C'	
dialog=2	

The dialogue is as follows:

•	T	0	pq	þ	9	r	a	t	ι_	r	::	1	2	3	4	С

The operator has typed in '123.4'. The return value in bTextPar is 'OK:123.4 C'. It is shown in the report of ProBatch+.

9.7.3 Discharge

This block is used for complete discharge of the scale.

Phase	F DISCHARGE	
Parameter	WP	Weighing point identification ('A', 'B',)
	cmd	Copy of iCommand
	iSPMin	Address: activate discharge, for detailed information, see
		Interface parametersr
	iSPMout	Address: discharge is active (discharge signal in oWPFlags)
	iCalmTime	Waiting time after reaching iPreset
	bSetpoint	Ignored; target is always 0.0 kg or lb
	iPreset	Stops discharging, when gross weight < iPreset, then wait for
		discharging as much as possible
	oActual	Actual gross weight

9.7.4 Batching

This block contains 6 batch modes. The behaviour is controlled by several parameters.

Phase	FDOSING	
Parameter	WP	Weighing point identification ('A', 'B',)
	cmd	Copy of iCommand
	iBatchMode	Batch mode (B1 B6), for more details, see Interface
		parameters
	iRstMode	Restart mode (0 4), see flow diagram in manual of
		ProBatch+
	iSPMin	Address for activating, for further details, see Interface
		parameters
	iSPMout	Address: phase running = material selection, coarse and fine then in oWPFlags
	iCalTime	Calming time in steps of 100 ms
	iPreset	Preset point coarse/fine in kg or lb
	bOvershoot	Overshoot in kg or lb
	iFlowrate	Limit for flowrate monitoring (0 = no monitoring) in kg/min or lb/min.
	iSetpoint	Setpoint (gross or net weight) in kg or Ib
	oActual	Actual net weight, then batch report in kg or lb
	iNegTol	Lower tolerance in kg or lb
	iPosTol	Opper tolerance in kg or lb
	iTextPara	Optional parameter:
		• Flowdelay = switch-on delay of flowrate monitoring
		default: 4s;
		 Adjust = fine / coarse ratio
		default: 0.125
		• D = density
		default: not used =1

For using FDOSING with B1 ... B6, licence PR1713/32 is required.

iBatchMode	Description	New tare weight	Gross setpoint
B1	Net batching	gross weight	tare + setpoint
B2	Charge batchingo	unchanged	old tare + setpoint
B3	Gross batching	0.0	setpoint
B4	Discharge batching	gross weight	tare – setpoint
B5	Charge/discharge batching	unchanged	old tare- setpoint
B6	Gross discharge batching	gross weight	setpoint

9.7.5 Manual addition

The phase for manual additions requests the operator to batch material manually.

Phase	FMANUAL	
Parameter	WP	Weighing point identification ('A', 'B',)
	cmd	Copy of iCommand
	iBatchMode	D1: with tolerance check, D2: without tolerance check and
		protocol. oActual = bSetpoint
	iSPMin	Address: batch completed (e.g. key), for more detailed
		information, see Interface parameters.
	iSPMout	Address: batching requested (e.g. lamp)
	bSetpoint	Setpoint
	oActual	Actual weight, added to report after completion
	iNegTol	Lower tolerance in kg or lb (0: no tolerance check)
	iPosTol	Uper tolerance in kg or lb (0: no tolerance check)
	bTextPara	Optional parameters: dialogue = (is checked - see dialogue),
		Default: no dialogue.

The phase waits for the activation bit iSPMin or for pressing the 'OK' key. iSPMin can be -1 or 0. In this case, manual batching can be terminated only by 'OK' at the instrument. The phase can be extended by means of the text parameters for entry of additional data after dosing. For using FMANUAL, licence PR1713/32 is required.

MANUAL (D1, D2) Pha_005

9.7.6 Set and reset bits

This phase is used for setting or resetting single SPM bits

Phase	FSETRES	
Parameter	WP	Weighing point identification ('A', 'B',)
	cmd	Copy of iCommand
	iSPMin	Not used
	iSPMout	Address of the SPM bit, which must be set or reset.

D6 oSPMoutBit D7 oSPMoutBit iCommand = 1

9.7.7 Stop

FSTOP changes into the HELD state directly and waits for the restart command.

Phase	FSTOP	
Parameter	WP	Weighing point identification ('A', 'B',)
	cmd	Copy of command iCommand
	iSPMout	Address: the phase waits for the addressed bit

Pha_008

STOP (D4)

9.7.8 Timer

Phase	FTIMER	
Parameter	WP	Weighing point identification ('A', 'B',)
	cmd	Copy of iCommand
	iSPMin	Address: activates the timer, for further information, see
		Interface parameters
	iSPMout	Address: timer running
	bSetpoint	Time in seconds (resolution: PLC clock, e.g. 50 ms)
	oActual	Elapsed time in seconds

9.7.9 Waiting for a bit

Phase	FWAITBIT	
Parameter	WP	Weighing point identification ('A', 'B',)
	cmd	Copy of iCommand
	iBatchMode	Operating mode (for more details, see Interface parameters):
		 D5: oSPMoutBit is set, wait for iSPMinBit and reset
		oSPMoutBit
		 D8: wait for iSPMinBit, then reset oSPMoutBit
	iSPMin	Address: wait, until this bit is set
	iSPMout	Address: bit set or reset

10 ERROR MESSAGES ON THE WEIGHT DISPLAY

The error statuses of the analog part are output on the weight display. They are displayed in code as 'Error X' .

	Error messages on the weight display
Error 1	Internal processor overflow (faulty calibration values)
Error 2	The input voltage is above f.s.d. + overload.
Error 3	The input voltage is above the permissible value of 36mV. However, the message can
	also be due to an error in the analog part or load cell, or a cable break.
Error 4	Weight value exceeds the display number of digits behind the decimal point.
Error 5	Weight value not available, e.g. weighing point busy
Error 6	Sense voltage out of tolerance
Error 7	Negative input voltage or faulty load cell connection
Error 8	ADC error, e.g. hardware defective or overload.
Error 9	No communication with the weighing point
Error 11	No weight value
Error 15	Different serial number

11 USED ABBREVIATIONS

Abbr.	Signification / comment
ASCII	Standard for description of characters during data transmission
BOOL	Data type, 1 single bit
CRC	Method for safeguarding a data transmission
d	Scale stepwidth
DINT	Data type, 32-bit integer value with polarity sign
EAROM	Erasable memory only for reading during operation
FSD	Fullscale value of the scale
ID	Identification number e.g. of a material
MD	Double integer address (32-bit) in the scratchpad memory
MW	Word address (16-bit) in the scratchpad memory
MX	Bit address in the scratchpad memory
NLE	NiceLabelExpress, Sartorius PC program
OPC	Interface in MS-windows operationg system
SPM-	Scratchpad-Memory: free addressible memory space
Address	
SPS	Programmable controller
WP	Weighing point, i.e. this scale

12 INDEX

Α

Aborting a phase	35
alphanumeric input	12
analog card	19
Analog card	22

В

Basic state diagram	64
Batch mode	66
BCD card	21
Boot menu	16

С

Cold start	16
Configuration17,	18
Customer	25

D

Debug	62
Default settings	
Delete	
Digital input	
Digital outputs	20
Display	
DUST 3964	54

Ε

EAROM	16, 18, 29
Einsteckkarten	8
Enter	11
Error messages	
Error x	
Example with I/O via PLC	41
Example with local I/O	

G

Gross weight 11

I

Interbus-S 4	7

Κ

Keys

L

Licence	
Limits	

Μ

Main menu	
Manual additions	
Modbus	
More	
	,

Ν

Nice Lable Express	9
--------------------	---

0

Options	7
Order ident	25

Ρ

PC keyboard	15
Phase sequence	64
PhaseController at PC	37
PhaseController connected to the PLC	40
Phases	63
PLC proxy	57
PR1713/013	8
PR1713/04	8
PR1713/06	8
PR1713/07	8

PR1713/08	8
PR1713/12	8
PR1713/15	8
PR1713/17	8
PR1721/11	8
PR1721/12	8
PR5510/04	9
PR5510/06	9
PR5510/07	9
PR5510/08	9
PR5510/09	9
PR5510/12	9
PR5510/13	9
PR5510/14	9
PR5521/31	9
PR5521/32	9
Predefined texts	
Print-out of configuration	
Production number	
Profibus	

R

Recipe start	25
Remote control	60
Repeat recipe	25
Reset tare	11
Restart	35

S

Scroll keys	13
Set tare	11
Setup	17
Simulation	25
Softkey	11
Softkeys	13
Start	31

PHASE Controller Operating Manual

Start parameters	
States	
Status display	
Stop	
Stopping a phase	
Switching on	

Τ

T_OPC	6	6
Tare weight	1	1

U

V

Virtual SPM	43
Virtual SPM survey	41
Visualisation	31

W

Weighing point switch-over	1	1
Weight print-out	1	1

Ζ

Zero setting 11

Sartorius Mechatronics T&H GmbH Meiendorfer Straße 205 22145 Hamburg, Germany Tel +49.40.67960.303 Fax: +49.40.67960.383 www.sartorius-mechatronics.com

© Sartorius Mechatronics T&H GmbH All rights are strictly reserved Printed in Germany